IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i9p1648-1660.html
   My bibliography  Save this article

Optimal periodic and random inspections with first, last and overtime policies

Author

Listed:
  • Xufeng Zhao
  • Toshio Nakagawa

Abstract

It has been assumed for a standby unit that periodic inspection is performed more easily to detect failures, but such a strict periodic mode would be impractical if the unit is executing some procedures without stops. From the above viewpoint, this paper first optimises a random inspection policy in accordance with random procedure times, compares it with periodic inspection and computes a modified checking cost for random inspection to determine the case where such a random inspection would be adopted. Second, this paper proposes three new inspection models in which inspections with deterministic policies are scheduled strategically while their performances need to be limited by completion times of operation procedures. These policies are called inspection first, inspection last and inspection overtime. The total expected inspection and downtime costs of each model until failure detection are obtained, and optimal policies which minimise them are derived analytically. Furthermore, the three inspection policies are compared with periodic inspection, inspection first and last are compared with each other, and a modified checking cost for inspection overtime is discussed when the policy would be better than periodic inspection.

Suggested Citation

  • Xufeng Zhao & Toshio Nakagawa, 2015. "Optimal periodic and random inspections with first, last and overtime policies," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1648-1660, July.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:9:p:1648-1660
    DOI: 10.1080/00207721.2013.827263
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.827263
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.827263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer & Inma T. Castro, 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Post-Print hal-00790728, HAL.
    2. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    3. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    4. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.
    5. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    6. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    7. G.Q. Cheng & L. Li, 2012. "A geometric process repair model with inspections and its optimisation," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(9), pages 1650-1655.
    8. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    9. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    10. Nakagawa, T. & Mizutani, S. & Chen, M., 2010. "A summary of periodic and random inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 906-911.
    11. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    2. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    3. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    4. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    2. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    3. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    4. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    5. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2017. "Comparisons of replacement policies with periodic times and repair numbers," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 161-170.
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    8. Ke, Hua & Yao, Kai, 2016. "Block replacement policy with uncertain lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 119-124.
    9. N. C. Caballé & I. T. Castro, 2019. "Assessment of the maintenance cost and analysis of availability measures in a finite life cycle for a system subject to competing failures," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 255-290, March.
    10. Zhao, Qian Qian & Yun, Won Young, 2018. "Determining the inspection intervals for one-shot systems with support equipment," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 63-75.
    11. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    12. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    15. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    17. Tsai, Hsin-Nan & Sheu, Shey-Huei & Zhang, Zhe George, 2017. "A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 74-88.
    18. Shey-Huei Sheu & Hsin-Nan Tsai & Tsung-Shin Hsu & Fu-Kwun Wang, 2015. "Optimal number of minimal repairs before replacement of a deteriorating system with inspections," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(8), pages 1367-1379, June.
    19. Shey-Huei Sheu & Tzu-Hsin Liu & Zhe-George Zhang & Hsin-Nan Tsai & Jung-Chih Chen, 2016. "Optimal two-threshold replacement policy in a cumulative damage model," Annals of Operations Research, Springer, vol. 244(1), pages 23-47, September.
    20. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:9:p:1648-1660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.