IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i7p1209-1232.html
   My bibliography  Save this article

Advances and applications of chance-constrained approaches to systems optimisation under uncertainty

Author

Listed:
  • Abebe Geletu
  • Michael Klöppel
  • Hui Zhang
  • Pu Li

Abstract

A chance-constrained optimisation (CCOPT) model has a dual goal: guaranteeing performance as well as system reliability under uncertainty. The beginning of CCOPT methods dates back in the 1950s. Recently, CCOPT approaches are gaining momentum as modern engineering and finance applications are forced to consider reliability and risk metrics at the design and planning stages. Although theoretical development and practical applications have been made, many open problems remain to be addressed in this area. This article attempts to provide a brief survey of major application areas, structure properties, challenges and solution approaches to CCOPT. In particular, we present our research results achieved in the past few years.

Suggested Citation

  • Abebe Geletu & Michael Klöppel & Hui Zhang & Pu Li, 2013. "Advances and applications of chance-constrained approaches to systems optimisation under uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(7), pages 1209-1232.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:7:p:1209-1232
    DOI: 10.1080/00207721.2012.670310
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.670310
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.670310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilien Germain & Huyên Pham & Xavier Warin, 2022. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Post-Print hal-03498263, HAL.
    2. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    4. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    5. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    6. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.
    7. Patrizia Beraldi & Antonio Violi & Maria Elena Bruni & Gianluca Carrozzino, 2017. "A Probabilistically Constrained Approach for the Energy Procurement Problem," Energies, MDPI, vol. 10(12), pages 1-17, December.
    8. Liu, Benxi & Cheng, Chuntian & Wang, Sen & Liao, Shengli & Chau, Kwok-Wing & Wu, Xinyu & Li, Weidong, 2018. "Parallel chance-constrained dynamic programming for cascade hydropower system operation," Energy, Elsevier, vol. 165(PA), pages 752-767.
    9. Balata, Alessandro & Ludkovski, Michael & Maheshwari, Aditya & Palczewski, Jan, 2021. "Statistical learning for probability-constrained stochastic optimal control," European Journal of Operational Research, Elsevier, vol. 290(2), pages 640-656.
    10. Fontem, Belleh & Smith, Jeremiah, 2019. "Analysis of a chance-constrained new product risk model with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 272(3), pages 999-1016.
    11. Alessandro Balata & Michael Ludkovski & Aditya Maheshwari & Jan Palczewski, 2019. "Statistical Learning for Probability-Constrained Stochastic Optimal Control," Papers 1905.00107, arXiv.org, revised Aug 2020.
    12. Peng, Shen & Maggioni, Francesca & Lisser, Abdel, 2022. "Bounds for probabilistic programming with application to a blend planning problem," European Journal of Operational Research, Elsevier, vol. 297(3), pages 964-976.
    13. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:7:p:1209-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.