IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i4p1258-1280.html
   My bibliography  Save this article

Autonomation policy to control work-in-process inventory in a smart production system

Author

Listed:
  • Bikash Koli Dey
  • Sarla Pareek
  • Muhammad Tayyab
  • Biswajit Sarkar

Abstract

The necessity of optimum safety stock is really essential for any smart production system. For this reason, the effect of autonomation policy makes a big difference with the basic traditional automation policy. Basically, for a long-run production system, a process may transfer to an ‘out-of-control’ state from an ‘in-control’ state due to labour problems, machinery problems, or any kind of energy problems. During this ‘out-of-control’ state, machines produced imperfect items instead of perfect items. As a result, an inspection is required to identify the imperfect ones. Until now, this inspection has been utilised by human beings through the traditional automation policy and inspection errors may occur. To perform an error-free inspection, an autonomation policy is examined in this model to detect imperfect items from the production process, which makes the process smarter. The defective rate is random and follows a certain distribution. A budget and a space constraints are adopted, which makes the model non-linear with a constraint problem. Contradictory to the existing literature, the demand is price- and quality-sensitive together in a smart production system. To solve this non-linear problem with an optimised value of backorders, number of delivery lots, safety factors, and collection rate, a non-linear optimisation technique (Khun–Tucker optimisation technique) is employed. A numerical example and sensitivity analysis are provided to illustrate the model. The result finds that the optimum autonomation policy can save work-in-process inventory at the optimum value of the decision variable in the proposed model.

Suggested Citation

  • Bikash Koli Dey & Sarla Pareek & Muhammad Tayyab & Biswajit Sarkar, 2021. "Autonomation policy to control work-in-process inventory in a smart production system," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1258-1280, February.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:4:p:1258-1280
    DOI: 10.1080/00207543.2020.1722325
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1722325
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1722325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Ye & Kwok Hung Lau, 2022. "Competitive Green Supply Chain Transformation with Dynamic Capabilities—An Exploratory Case Study of Chinese Electronics Industry," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    2. Rung-Hung Su & Ming-Wei Weng & Chih-Te Yang & Chia-Hsuan Hsu, 2023. "Optimal Circular Economy and Process Maintenance Strategies for an Imperfect Production–Inventory Model with Scrap Returns," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    3. Bikash Koli Dey & Hyesung Seok, 2024. "Intelligent inventory management with autonomation and service strategy," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 307-330, January.
    4. Rini & Priyamvada & Chandra K. Jaggi, 2021. "Sustainable and flexible production system for a deteriorating item with quality consideration," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 951-960, October.
    5. Gábor Szabó-Szentgróti & Bence Végvári & József Varga, 2021. "Impact of Industry 4.0 and Digitization on Labor Market for 2030-Verification of Keynes’ Prediction," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    6. Valentín Pando & Luis A. San-José & Joaquín Sicilia, 2021. "An Inventory Model with Stock-Dependent Demand Rate and Maximization of the Return on Investment," Mathematics, MDPI, vol. 9(8), pages 1-18, April.
    7. Chauhan, Ruchi & Majumder, Arunava & Kumar, Varun, 2023. "The impact of adopting customization policy and sustainability for improving consumer service in a dual-channel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:4:p:1258-1280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.