IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i17p5520-5537.html
   My bibliography  Save this article

Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems

Author

Listed:
  • Zikai Zhang
  • Qiuhua Tang
  • Zixiang Li
  • Liping Zhang

Abstract

Within U-shaped assembly lines, the increase of labour costs and subsequent utilisation of robots has led to growing energy consumption, which is the current main expense of auto and electronics industries. However, there are limited researches concerning both energy consumption reduction and productivity improvement on U-shaped robotic assembly lines. This paper first develops a nonlinear multi-objective mixed-integer programming model, reformulates it into a linear form by linearising the multiplication of two binary variables, and then refines the weight of multiple objectives so as to achieve a better approximation of true Pareto frontiers. In addition, Pareto artificial bee colony algorithm (PABC) is extended to tackle this new complex problem. This algorithm stores all the non-dominated solutions into a permanent archive set to keep all the good genes, and selects one solution from this set to overcome the strong local minima. Comparative experiments based on a set of newly generated benchmarks verify the superiority of the proposed PABC over four multi-objective algorithms in terms of generation distance, maximum spread, hypervolume ratio and the ratio of non-dominated solution.

Suggested Citation

  • Zikai Zhang & Qiuhua Tang & Zixiang Li & Liping Zhang, 2019. "Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5520-5537, September.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5520-5537
    DOI: 10.1080/00207543.2018.1530479
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1530479
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1530479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Masood Fathi & Amir Nourmohammadi & Morteza Ghobakhloo & Milad Yousefi, 2020. "Production Sustainability via Supermarket Location Optimization in Assembly Lines," Sustainability, MDPI, vol. 12(11), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:17:p:5520-5537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.