IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v14y2020i4p260-277.html
   My bibliography  Save this article

The Diffusion of Alternative Fuel Vehicles: A Generalised Model and Future Research Agenda

Author

Listed:
  • David R. Keith
  • Jeroen J.R. Struben
  • Sergey Naumov

Abstract

The rapid decarbonisation of transportation is critical if global efforts to mitigate the worst possible impacts of anthropogenic climate change are to be successful. Transportation is a leading sectoral contributor of greenhouse gas emissions, and demand for transportation continues to grow globally. Alternative fuel vehicles (AFVs) powered by fuels such as electricity, hydrogen, and biofuels promise to mitigate the environmental impacts of automotive transportation, including urban air pollution and greenhouse gas emissions. However, multiple barriers to AFV diffusion exist, including low consumer acceptance, high vehicle costs, and a lack of refuelling infrastructure, meaning that sophisticated policies and strategies will be needed to achieve an AFV market transition that is both ecologically and economically sustainable. While more EVs were sold in 2018 than ever before, these sales were the result of aggressive policy support in places such as China and Norway, and it is not clear that EV sales would persist at this level if these policies were removed. In this paper, we present and make freely available a generalised model of AFV diffusion that is flexible for the exploration of these critical policy questions, building on recent AFV diffusion literature from system dynamics and related fields. We demonstrate using illustrative scenarios the fragility of AFV diffusion, with a range of behaviour modes possible depending on the structure of the market and the actions of stakeholders. Finally, we identify a number of contemporary research topics of interest to automotive manufacturers and policymakers that can be addressed using the model.

Suggested Citation

  • David R. Keith & Jeroen J.R. Struben & Sergey Naumov, 2020. "The Diffusion of Alternative Fuel Vehicles: A Generalised Model and Future Research Agenda," Journal of Simulation, Taylor & Francis Journals, vol. 14(4), pages 260-277, October.
  • Handle: RePEc:taf:tjsmxx:v:14:y:2020:i:4:p:260-277
    DOI: 10.1080/17477778.2019.1708219
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17477778.2019.1708219
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17477778.2019.1708219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Zeng & Chris Kwan Yu Lo & Stacy Hyun Nam Lee, 2021. "Will Communication of Job Creation Facilitate Diffusion of Innovations in the Automobile Industry?," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
    2. Fabienne T. Schiavo & Rodrigo F. Calili & Claudio F. de Magalhães & Isabel C. G. Fróes, 2021. "The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    3. Song, Yanqiu & Shangguan, Lingzhi & Li, Guijun, 2021. "Simulation analysis of flexible concession period contracts in electric vehicle charging infrastructure public-private-partnership (EVCI-PPP) projects based on time-of-use (TOU) charging price strateg," Energy, Elsevier, vol. 228(C).
    4. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    5. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    6. Sergey Naumov & David Keith, 2023. "Optimizing the economic and environmental benefits of ride‐hailing and pooling," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 904-929, March.
    7. Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2020. "Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement," Energies, MDPI, vol. 13(19), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:14:y:2020:i:4:p:260-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.