IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v69y2018i11p1819-1833.html
   My bibliography  Save this article

Closest target for the orientation-free context-dependent DEA under variable returns to scale

Author

Listed:
  • Jie Wu
  • Yafei Yu
  • Qingyuan Zhu
  • Qingxian An
  • Liang Liang

Abstract

An important branch of data envelopment analysis (DEA) is context-dependent DEA, which evaluates efficiency by combining the attractiveness and progress for a particular decision-making unit (DMU). Traditionally, context-dependent DEA models are based on the assumption of constant returns to scale. Two limitations are found when directly extending original radial context-dependent DEA (ORCD-DEA) models into variable returns to scale versions. One is that it may not be possible to determine the attractiveness of a DMU that logically must be attractive in that context. The other problem is that the progress measure cannot ensure an inefficient DMU projects to a Pareto-efficient frontier. A small numerical example is used to illustrate these two issues. In order to overcome these deficiencies, the concept of closest target is introduced to determine the attractiveness and progress for each DMU. The closest target method can further improve DMUs’ performance with less wastes in inputs or underproduction in outputs. Finally, a practical application involving computer printers is presented.

Suggested Citation

  • Jie Wu & Yafei Yu & Qingyuan Zhu & Qingxian An & Liang Liang, 2018. "Closest target for the orientation-free context-dependent DEA under variable returns to scale," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1819-1833, November.
  • Handle: RePEc:taf:tjorxx:v:69:y:2018:i:11:p:1819-1833
    DOI: 10.1080/01605682.2017.1409865
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2017.1409865
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2017.1409865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaoyang & Xu, Zhongwen & Chai, Jian & Yao, Liming & Wang, Shouyang & Lev, Benjamin, 2019. "Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model," Omega, Elsevier, vol. 85(C), pages 68-82.
    2. Yongjun Li & Feng Li & Ali Emrouznejad & Liang Liang & Qiwei Xie, 2019. "Allocating the fixed cost: an approach based on data envelopment analysis and cooperative game," Annals of Operations Research, Springer, vol. 274(1), pages 373-394, March.
    3. Chen, Lei & Wang, Ying-Ming, 2020. "DEA target setting approach within the cross efficiency framework," Omega, Elsevier, vol. 96(C).
    4. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    5. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    6. Anna Labijak-Kowalska & Miłosz Kadziński, 2023. "Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis," Operational Research, Springer, vol. 23(1), pages 1-34, March.
    7. Lozano, S. & Hinojosa, M.A. & Mármol, A.M., 2019. "Extending the bargaining approach to DEA target setting," Omega, Elsevier, vol. 85(C), pages 94-102.
    8. Qingxian An & Fanyong Meng & Beibei Xiong & Zongrun Wang & Xiaohong Chen, 2020. "Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach," Annals of Operations Research, Springer, vol. 290(1), pages 707-729, July.
    9. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    10. An, Qingxian & Wen, Yao & Ding, Tao & Li, Yongli, 2019. "Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method," Omega, Elsevier, vol. 85(C), pages 16-25.
    11. Jin-Li Hu & Tzu-Pu Chang, 2021. "Evaluating the Context-Dependent Total-Factor Energy Efficiency of Counties and Cities in Taiwan," Energies, MDPI, vol. 14(15), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:69:y:2018:i:11:p:1819-1833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.