IDEAS home Printed from https://ideas.repec.org/a/taf/mpopst/v18y2011i1p18-37.html
   My bibliography  Save this article

Modelling Deceleration in Senescent Mortality

Author

Listed:
  • MARK BEBBINGTON
  • CHIN-DIEW LAI
  • RIcARDAS ZITIKIS

Abstract

Mortality deceleration is the observed but yet to be understood phenomenon that the increase in the late-life death rate slows down after a certain species-related advanced age. Various definitions of onsets of mortality deceleration are examined. A new distribution based on the Strehler-Mildvan theory of aging takes on the required shapes. The application is done on mortality data from the 1892 cohort of Swedish women and on Mediterranean fruit flies.

Suggested Citation

  • MARK BEBBINGTON & CHIN-DIEW LAI & RIcARDAS ZITIKIS, 2011. "Modelling Deceleration in Senescent Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(1), pages 18-37.
  • Handle: RePEc:taf:mpopst:v:18:y:2011:i:1:p:18-37
    DOI: 10.1080/08898480.2011.540173
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/08898480.2011.540173
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/08898480.2011.540173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. James W. Vaupel & Annette Baudisch & Martin Dölling & Deborah A. Roach & Jutta Gampe, 2004. "The case for negative senescence," MPIDR Working Papers WP-2004-002, Max Planck Institute for Demographic Research, Rostock, Germany.
    3. David Steinsaltz & Kenneth Wachter, 2006. "Understanding Mortality Rate Deceleration and Heterogeneity," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 19-37.
    4. Anatoli Yashin & Ivan Iachine & Alexander Begun, 2000. "Mortality modeling: A review," Mathematical Population Studies, Taylor & Francis Journals, vol. 8(4), pages 305-332.
    5. James Carey, 1997. "What demographers can learn from fruit fly actuarial models and biology," Demography, Springer;Population Association of America (PAA), vol. 34(1), pages 17-30, February.
    6. Mark Bebbington & Chin‐Diew Lai & Ričardas Zitikis, 2008. "Reduction in mean residual life in the presence of a constant competing risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(1), pages 51-63, January.
    7. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    2. Michael Epelbaum, 2014. "Lifespan and Aggregate Size Variables in Specifications of Mortality or Survivorship," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    3. Ernest Lo & Dan Vatnik & Andrea Benedetti & Robert Bourbeau, 2016. "Variance models of the last age interval and their impact on life expectancy at subnational scales," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(15), pages 399-454.
    4. Peter Wagner, 2011. "Vitality heterogeneity in the Strehler-Mildvan theory of mortality," MPIDR Working Papers WP-2011-012, Max Planck Institute for Demographic Research, Rostock, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    2. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    3. Li, Ting & Anderson, James J., 2009. "The vitality model: A way to understand population survival and demographic heterogeneity," Theoretical Population Biology, Elsevier, vol. 76(2), pages 118-131.
    4. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    5. Maxim S. Finkelstein, 2005. "Aging: damage accumulation versus increasing mortality rate," MPIDR Working Papers WP-2005-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    6. Kenneth Manton & Igor Akushevich & Alexander Kulminski, 2008. "Human Mortality at Extreme Ages: Data from the NLTCS and Linked Medicare Records," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 137-159.
    7. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    8. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    9. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    10. M S Finkelstein, 2008. "Reliability modelling for biological ageing," Journal of Risk and Reliability, , vol. 222(1), pages 1-6, March.
    11. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    12. James W. Vaupel, 2009. "Lively Questions for Demographers about Death at Older Ages," Population and Development Review, The Population Council, Inc., vol. 35(2), pages 347-356, June.
    13. Leonardo Piccione & Gianpiero Dalla Zuanna & Alessandra Minello, 2014. "Mortality selection in the first three months of life and survival in the following thirty-three months in rural Veneto (North-East Italy) from 1816 to 1835," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(39), pages 1199-1228.
    14. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    15. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    16. Elizabeth Wrigley-Field, 2020. "Multidimensional Mortality Selection: Why Individual Dimensions of Frailty Don’t Act Like Frailty," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 747-777, April.
    17. Maxim S. Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," MPIDR Working Papers WP-2009-031, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Maxim S. Finkelstein, 2003. "Modeling failure (mortality) rate with a change point," MPIDR Working Papers WP-2003-041, Max Planck Institute for Demographic Research, Rostock, Germany.
    19. Dennis M. Feehan, 2018. "Separating the Signal From the Noise: Evidence for Deceleration in Old-Age Death Rates," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2025-2044, December.
    20. Maxim Finkelstein, 2012. "Discussing the Strehler-Mildvan model of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(9), pages 191-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:18:y:2011:i:1:p:18-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GMPS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.