IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i12p2142-2160.html

Self-selection and direct estimation of across-regime correlation parameter

Author

Listed:
  • Giorgio Calzolari
  • Antonino Di Pino

Abstract

A direct maximum likelihood (ML) procedure to estimate the ‘generally unidentified’ across-regime correlation parameter in a two-regime endogenous switching model is here provided. The results of a Monte Carlo experiment confirm consistency of our direct ML procedure, and its relative efficiency over widely applied models and methods. As an empirical application, we estimate a two-regime simultaneous equation model of domestic work of Italian married women in which the two regimes are given by their working status (employed or unemployed).

Suggested Citation

  • Giorgio Calzolari & Antonino Di Pino, 2017. "Self-selection and direct estimation of across-regime correlation parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2142-2160, September.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2142-2160
    DOI: 10.1080/02664763.2016.1247789
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1247789
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1247789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Calzolari & Maria Gabriella Campolo & Antonino Pino & Laura Magazzini, 2023. "Assessing individual skill influence on housework time of Italian women: an endogenous-switching approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 659-679, June.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2142-2160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.