IDEAS home Printed from
   My bibliography  Save this article

Laplace transforms and American options


  • Roland Mallier
  • Ghada Alobaidi


Laplace transform methods are used to study the valuation of American call and put options with constant dividend yield, and to derive integral equations giving the location of the optimal exercise boundary. In each case studied, the main result of this paper is a nonlinear Fredholm-type integral equation for the location of the free boundary. The equations differ depending on whether the dividend yield is less than or exceeds the risk-free rate. These integral equations contain a transform variable, so the solution of the equations would involve finding the free boundary that satisfies the equations for all values of this transform variable. Expressions are also given for the transform of the value of the option in terms of this free boundary.

Suggested Citation

  • Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
  • Handle: RePEc:taf:apmtfi:v:7:y:2000:i:4:p:241-256 DOI: 10.1080/13504860110060384

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Walter Allegretto & Giovanni Barone-Adesi & Robert Elliott, 1995. "Numerical evaluation of the critical price and American options," The European Journal of Finance, Taylor & Francis Journals, vol. 1(1), pages 69-78.
    2. Geske, Robert, 1981. "Comments on Whaley's note," Journal of Financial Economics, Elsevier, vol. 9(2), pages 213-215, June.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Geske, Robert, 1979. "A note on an analytical valuation formula for unprotected American call options on stocks with known dividends," Journal of Financial Economics, Elsevier, vol. 7(4), pages 375-380, December.
    5. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    6. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. " Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    7. Bunch, David S & Johnson, Herb, 1992. " A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-816, June.
    8. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    9. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103 World Scientific Publishing Co. Pte. Ltd..
    12. Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Franck Moraux, 2009. "On perpetual American strangles," Post-Print halshs-00393811, HAL.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:7:y:2000:i:4:p:241-256. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.