IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v16y2009i3p269-286.html
   My bibliography  Save this article

Displaced Diffusion as an Approximation of the Constant Elasticity of Variance

Author

Listed:
  • Simona Svoboda-Greenwood

Abstract

The CEV (constant elasticity of variance) and displaced diffusion processes have been posited as suitable alternatives to a lognormal process in modelling the dynamics of market variables such as stock prices and interest rates. Marris (1999) noted that, for a certain parameterization, option prices produced by the two processes display close correspondence across a range of strikes and maturities. This parametrization is a simple linearization of the CEV dynamics around the initial value of the underlying and we quantify the observed agreement in option prices by performing a small time expansion of the option prices around the forward-at-the-money value of the underlying. We show further results regarding the comparability of the conditional probability density functions of the two processes and hence the associated moments.

Suggested Citation

  • Simona Svoboda-Greenwood, 2009. "Displaced Diffusion as an Approximation of the Constant Elasticity of Variance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 269-286.
  • Handle: RePEc:taf:apmtfi:v:16:y:2009:i:3:p:269-286
    DOI: 10.1080/13504860802628553
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860802628553
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Lee & Dan Wang, 2012. "Displaced lognormal volatility skews: analysis and applications to stochastic volatility simulations," Annals of Finance, Springer, vol. 8(2), pages 159-181, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:16:y:2009:i:3:p:269-286. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.