IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v71y2017i4p305-309.html
   My bibliography  Save this article

What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?

Author

Listed:
  • Jesse Frey
  • Yimin Zhang

Abstract

The interval between two prespecified order statistics of a sample provides a distribution-free confidence interval for a population quantile. However, due to discreteness, only a small set of exact coverage probabilities is available. Interpolated confidence intervals are designed to expand the set of available coverage probabilities. However, we show here that the infimum of the coverage probability for an interpolated confidence interval is either the coverage probability for the inner interval or the coverage probability obtained by removing the more likely of the two extreme subintervals from the outer interval. Thus, without additional assumptions, interpolated intervals do not expand the set of available guaranteed coverage probabilities.

Suggested Citation

  • Jesse Frey & Yimin Zhang, 2017. "What Do Interpolated Nonparametric Confidence Intervals for Population Quantiles Guarantee?," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 305-309, October.
  • Handle: RePEc:taf:amstat:v:71:y:2017:i:4:p:305-309
    DOI: 10.1080/00031305.2016.1226952
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1226952
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1226952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hettmansperger, Thomas P. & Sheather, Simon J., 1986. "Confidence intervals based on interpolated order statistics," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 75-79, March.
    2. Derek S. Young & Thomas Mathew, 2014. "Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 415-432, September.
    3. Nyblom, Jukka, 1992. "Note on interpolated order statistics," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 129-131, May.
    4. Yvonne H. S. Ho & Stephen M. S. Lee, 2005. "Calibrated interpolated confidence intervals for population quantiles," Biometrika, Biometrika Trust, vol. 92(1), pages 234-241, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beutner, E. & Cramer, E., 2014. "Using linear interpolation to reduce the order of the coverage error of nonparametric prediction intervals based on right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 95-109.
    2. Nourmohammadi, Mohammad & Jafari Jozani, Mohammad & Johnson, Brad C., 2014. "Confidence intervals for quantiles in finite populations with randomized nomination sampling," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 112-128.
    3. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    4. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    5. Alan Hutson, 1999. "Calculating nonparametric confidence intervals for quantiles using fractional order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(3), pages 343-353.
    6. Frey, Jesse, 2014. "Shorter nonparametric prediction intervals for an order statistic from a future sample," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 69-75.
    7. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    8. Kedai Cheng & Derek S. Young, 2023. "An Approach for Specifying Trimming and Winsorization Cutoffs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 299-323, June.
    9. Olivier Guilbaud, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 279-281, August.
    10. Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
    11. Kyung Serk Cho & Hon Keung Tony Ng, 2021. "Tolerance intervals in statistical software and robustness under model misspecification," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-49, December.
    12. Juan Herrero & Carmen Castañeda, 2023. "Comparing Two Saline-Gypseous Wetland Soils in NE Spain," Land, MDPI, vol. 12(11), pages 1-17, October.
    13. Szilárd Nemes, 2019. "Likelihood Confidence Intervals When Only Ranges Are Available," Stats, MDPI, vol. 2(1), pages 1-7, February.
    14. Papadatos, N., 1995. "Intermediate order statistics with applications to nonparametric estimation," Statistics & Probability Letters, Elsevier, vol. 22(3), pages 231-238, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:71:y:2017:i:4:p:305-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.