IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i1d10.1007_s11269-024-03969-8.html
   My bibliography  Save this article

A Comparative Study of Machine Learning Models for Daily and Weekly Rainfall Forecasting

Author

Listed:
  • Vijendra Kumar

    (Dr. Vishwanath Karad MIT World Peace University)

  • Naresh Kedam

    (Samara National Research University)

  • Ozgur Kisi

    (Luebeck University of Applied Sciences
    Ilia State University)

  • Saleh Alsulamy

    (King Khalid University)

  • Khaled Mohamed Khedher

    (King Khalid University)

  • Mohamed Abdelaziz Salem

    (King Khalid University)

Abstract

Accurate rainfall forecasting is crucial for various sectors across diverse geographical regions, including Uttarakhand, Uttar Pradesh, Haryana, Punjab, Himachal Pradesh, Madhya Pradesh, Rajasthan, and the Union Territory of Delhi. This study addresses the need for precise rainfall predictions by bridging the gap between localized meteorological data and broader regional influences. It explores how rainfall patterns in neighboring states affect Delhi's precipitation, aiming to improve forecasting accuracy. Historical rainfall data from neighboring states over four decades (1980–2021) were collected and analyzed. The study employs a dual-model approach: a daily model for immediate rainfall triggers and a weekly model for longer-term trends. Several machine learning algorithms, including CatBoost, XGBoost, ElasticNet, Lasso, LGBM, Random Forest, Multilayer Perceptron, Ridge, Stochastic Gradient Descent, and Linear Regression, were used in the modeling process. These models were rigorously assessed based on performance metrics from training, validation, and testing datasets. For daily rainfall forecasting, CatBoost, XGBoost, and Random Forest emerged as top performers, showcasing exceptional accuracy and pattern-capturing capabilities. In weekly rainfall forecasting, XGBoost consistently achieved near-perfect accuracy with an R2 value of 0.99, with Random Forest and CatBoost also demonstrating strong performance. The study provides valuable insights into how climate patterns in neighboring states influence Delhi's weather, leading to more reliable and timely rainfall predictions.

Suggested Citation

  • Vijendra Kumar & Naresh Kedam & Ozgur Kisi & Saleh Alsulamy & Khaled Mohamed Khedher & Mohamed Abdelaziz Salem, 2025. "A Comparative Study of Machine Learning Models for Daily and Weekly Rainfall Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 271-290, January.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:1:d:10.1007_s11269-024-03969-8
    DOI: 10.1007/s11269-024-03969-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03969-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03969-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Di Nunno & Francesco Granata & Quoc Bao Pham & Giovanni de Marinis, 2022. "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    2. Xiaoliang Xie & Bingqi Xie & Jiaqi Cheng & Qi Chu & Thomas Dooling, 2021. "A simple Monte Carlo method for estimating the chance of a cyclone impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2573-2582, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    2. Zaid Khalid & Munawar Shah & Salma Riaz & Bushra Ghaffar & Punyawi Jamjareegulgarn, 2024. "Atmospheric precursors associated with two Mw > 6.0 earthquakes using machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7871-7895, June.
    3. Anwar Hussain & Masoud Reihanifar & Rizwan Niaz & Olayan Albalawi & Mohsen Maghrebi & Abdelkader T. Ahmed & Ali Danandeh Mehr, 2024. "Characterizing Inter-Seasonal Meteorological Drought Using Random Effect Logistic Regression," Sustainability, MDPI, vol. 16(19), pages 1-20, September.
    4. Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2023. "Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 5871-5891, December.
    5. Anas Rahimi & Noor Kh. Yashooa & Ali Najah Ahmed & Mohsen Sherif & Ahmed El-shafie, 2025. "Different Time-Increment Rainfall Prediction Models: a Machine Learning Approach Using Various Input Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(4), pages 1677-1696, March.
    6. Shahenaz Mulla & Chaitanya B. Pande & Sudhir K. Singh, 2024. "Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1825-1846, April.
    7. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    8. Shan-e-hyder Soomro & Muhammad Waseem Boota & Xiaotao Shi & Gul-e-Zehra Soomro & Yinghai Li & Muhammad Tayyab & Caihong Hu & Chengshuai Liu & Yuanyang Wang & Junaid Abdul Wahid & Mairaj Hyder Alias Aa, 2024. "Appraisal of Urban Waterlogging and Extent Damage Situation after the Devastating Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4911-4931, September.
    9. Naif Al Mudawi & Mahwish Pervaiz & Bayan Ibrahimm Alabduallah & Abdulwahab Alazeb & Abdullah Alshahrani & Saud S. Alotaibi & Ahmad Jalal, 2023. "Predictive Analytics for Sustainable E-Learning: Tracking Student Behaviors," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    10. Ramachandramoorthi Shanmugapriya & Perichetla Kandaswamy Hemalatha & Lenka Cepova & Jiri Struz, 2023. "A Study of Independency on Fuzzy Resolving Sets of Labelling Graphs," Mathematics, MDPI, vol. 11(16), pages 1-9, August.
    11. Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:1:d:10.1007_s11269-024-03969-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.