IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i9d10.1007_s11269-024-03811-1.html
   My bibliography  Save this article

Generalized Structure of Group Method of Data Handling: Novel Technique for Flash Flood Forecasting

Author

Listed:
  • Isa Ebtehaj

    (Université Laval)

  • Hossein Bonakdari

    (University of Ottawa)

Abstract

In the current study, the Generalized Structure of the Group Method Of Data Handling (GSGMDH) is developed to overcome the main drawbacks of the classical GDMH. The performance of the GSGMDH was checked in two case studies for multi-step flood forecasting at the upstream station (i.e., Saint-Charles station) using the historical records of upstream stations (i.e., Nelson and Croche stations). The results revealed high accuracy in flood forecasting one to six hours ahead for all sample ranges and peak flows, with indices showing R: [0.993, 0.9995], NSE: [0.986, 0.999], RMSE: [0.416, 1.453], NRMSE: [0.0239, 0.152], MAE: [0.146, 0.761], MARE: [0.023, 0.156], and BIAS: [-0.058, 0.01]. Indeed, the descriptive performance of the developed model rates as Very Good for both R and NSE, and Good for NRMSE. The uncertainty analysis of the GSGMDH models demonstrates remarkable precision in flood forecasting, with relative differences between the minimum and maximum uncertainty ranges of less than 1% for both Nelson and Croche upstream stations. Specifically, U95 for Nelson is [0.148, 0.149], and for Croche, it is [0.166, 0.167]. Besides, The reliability analysis of the GSGMDH highlights its effective peak flow forecasting capabilities, with MARE values for various flow discharges remaining below 10% across different lead times, demonstrating the model's precision in predicting high-impact flood events. Moreover, a comparison between the developed GSGMDH and the traditional model reveals that the former surpasses the latter, achieving a maximum relative error of less than 7%, in contrast to the traditional GMDH's minimum MARE exceeding 12%.

Suggested Citation

  • Isa Ebtehaj & Hossein Bonakdari, 2024. "Generalized Structure of Group Method of Data Handling: Novel Technique for Flash Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3235-3253, July.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03811-1
    DOI: 10.1007/s11269-024-03811-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03811-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03811-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
    2. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    3. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2023. "Forecasting Pesticide Use on Golf Courses by Integration of Deep Learning and Decision Tree Techniques," Agriculture, MDPI, vol. 13(6), pages 1-22, May.
    4. Tsun-Hua Yang & Wen-Cheng Liu, 2020. "A General Overview of the Risk-Reduction Strategies for Floods and Droughts," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.
    2. Leal Filho, Walter & Wall, Tony & Rui Mucova, Serafino Afonso & Nagy, Gustavo J. & Balogun, Abdul-Lateef & Luetz, Johannes M. & Ng, Artie W. & Kovaleva, Marina & Safiul Azam, Fardous Mohammad & Alves,, 2022. "Deploying artificial intelligence for climate change adaptation," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Mona Nemati & Mahmoud Mohammad Rezapour Tabari & Seyed Abbas Hosseini & Saman Javadi, 2021. "A Novel Approach Using Hybrid Fuzzy Vertex Method-MATLAB Framework Based on GMS Model for Quantifying Predictive Uncertainty Associated with Groundwater Flow and Transport Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4189-4215, September.
    4. Syafri Syafri & Batara Surya & Ridwan Ridwan & Syamsul Bahri & Emil Salim Rasyidi & Sudarman Sudarman, 2020. "Water Quality Pollution Control and Watershed Management Based on Community Participation in Maros City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    5. Simona Mannucci & Federica Rosso & Alessandro D’Amico & Gabriele Bernardini & Michele Morganti, 2022. "Flood Resilience and Adaptation in the Built Environment: How Far along Are We?," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    6. Motrza Ghobadi & Masumeh Ahmadipari, 2024. "Enhancing Flood Susceptibility Modeling: a Hybrid Deep Neural Network with Statistical Learning Algorithms for Predicting Flood Prone Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2687-2710, June.
    7. Mojtaba Kadkhodazadeh & Saeed Farzin, 2022. "Introducing a Novel Hybrid Machine Learning Model and Developing its Performance in Estimating Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3901-3927, August.
    8. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    9. Xinyue Ke & Ni Wang & Long Yu & Zihan Guo & Tianming He, 2023. "Spatial Distribution of Water Risk Based on Atlas Compilation in the Shaanxi Section of the Qinling Mountains, China," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    10. Srishti Gaur & Arnab Bandyopadhyay & Rajendra Singh, 2021. "From Changing Environment to Changing Extremes: Exploring the Future Streamflow and Associated Uncertainties Through Integrated Modelling System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1889-1911, April.
    11. Vikash Shivhare & Alok Kumar & Reetesh Kumar & Satyanarayan Shashtri & Javed Mallick & Chander Kumar Singh, 2024. "Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11579-11610, October.
    12. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    13. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    14. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.
    15. Saeed Alqadhi & Javed Mallick & Swapan Talukdar & Mohd. Ahmed & Roohul Abad Khan & Showmitra Kumar Sarkar & Atiqur Rahman, 2022. "Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 641-671, August.
    16. Mohammed Achite & Saeed Farzin & Nehal Elshaboury & Mahdi Valikhan Anaraki & Mohammed Amamra & Abderrezak Kamel Toubal, 2024. "Modeling the optimal dosage of coagulants in water treatment plants using various machine learning models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3395-3421, February.
    17. Syed Ahmad Hakim Bin Syed Muzamil & Noor Yasmin Zainun & Nadiatul Nazleen Ajman & Noralfishah Sulaiman & Shabir Hussain Khahro & Munzilah Md. Rohani & Saifullizan Mohd Bukari Mohd & Hilton Ahmad, 2022. "Proposed Framework for the Flood Disaster Management Cycle in Malaysia," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    18. Ali Bouamrane & Oussama Derdous & Hamza Bouchehed & Habib Abida, 2025. "Assessing future changes in flood susceptibility under projections from the sixth coupled model intercomparison project: case study of Algiers City (Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2133-2153, January.
    19. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    20. Shan-e-hyder Soomro & Muhammad Waseem Boota & Xiaotao Shi & Gul-e-Zehra Soomro & Yinghai Li & Muhammad Tayyab & Caihong Hu & Chengshuai Liu & Yuanyang Wang & Junaid Abdul Wahid & Mairaj Hyder Alias Aa, 2024. "Appraisal of Urban Waterlogging and Extent Damage Situation after the Devastating Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4911-4931, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03811-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.