IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i12d10.1007_s11269-023-03586-x.html
   My bibliography  Save this article

Univariate and Bivariate Hydrological Drought Frequency Analysis by Copula Functions

Author

Listed:
  • Ibrahim Halil Deger

    (Hasan Kalyoncu University)

  • Musa Esıt

    (Adiyaman University)

  • Mehmet Ishak Yuce

    (Gaziantep University)

Abstract

Drought duration and severity are two significant and strongly related drought characteristics. In this study, the Streamflow Drought Index (SDI) is utilized to acquire drought characteristics using mean monthly streamflow records of 36 stations in the Euphrates Basin, considering 3- and 6-month time scales. Mann–Kendall’s rank correlation coefficient is utilized for analyzing the dependence between severity and duration, as well as for deciding the suitability of series for joint return periods. Six marginal distributions are used to model the marginal distributions of duration and severity. The best fit marginal distributions of these drought characteristics and the best copulas among ten copula types were utilized for constructing univariate return periods of 10, 20, 50, 100, 200, and 500-years and bivariate return periods considering the TDS (and) and T′DS (or) cases. The best copulas are analyzed by tail dependence and by goodness of fit tests. Results indicate that the correlation coefficients are between 0.691–0.893 in SDI-3 while they are between 0.741–0.904 in SDI-6. Marginal distribution analyses show that the Lognormal and Weibull distributions are the best-fit distributions for drought duration and severity in SDI-3 while the Lognormal and Gamma were noted to be the most suitable distributions for duration and severity, respectively in SDI-6. Analyses reveal that the Gumbel copula has a clear superiority to model joint return periods in both time scales. Different parts of the basin are at risk of drought for various return periods.

Suggested Citation

  • Ibrahim Halil Deger & Musa Esıt & Mehmet Ishak Yuce, 2023. "Univariate and Bivariate Hydrological Drought Frequency Analysis by Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4881-4907, September.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:12:d:10.1007_s11269-023-03586-x
    DOI: 10.1007/s11269-023-03586-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03586-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03586-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anas Mahmood Al-Juboori, 2023. "Prediction of Hydrological Drought in Semi-arid Regions Using a Novel Hybrid Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3657-3669, July.
    2. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    3. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    4. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    5. Ihsan F. Hasan & Rozi Abdullah, 2022. "Agricultural Drought Characteristics Analysis Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5915-5930, December.
    6. Homa Razmkhah & Alireza Fararouie & Amin Rostami Ravari, 2022. "Multivariate Flood Frequency Analysis Using Bivariate Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 729-743, January.
    7. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Hannoun Wafaa & Zoglat Abdelhak & Ezzahid ElHadj & El Adlouni Salah-Eddine, 2024. "D-vine Copula Quantile Regression for a Multidimensional Water Expenditures Analysis: Social and Regional Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3279-3295, July.
    2. Suvro Aon & Sujata Biswas, 2024. "Bivariate Assessment of Hydrological Drought of a Semi-Arid Basin and Investigation of Drought Propagation Using a Novel Cross Wavelet Transform Based Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2977-3005, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    2. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    3. T. Sharma & U. Panu, 2014. "A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1597-1611, April.
    4. Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra, 2018. "Characteristics of meteorological droughts in northwestern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 561-582, November.
    5. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    6. Majid Niazkar & Reza Piraei & Mohammad Zakwan, 2025. "Application of Machine Learning Models for Short-term Drought Analysis Based on Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 91-108, January.
    7. Kimia Naderi & Mahnoosh Moghaddasi & Ashkan shokri, 2022. "Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2865-2888, June.
    8. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    9. Vergni, L. & Todisco, F. & Di Lena, B. & Mannocchi, F., 2020. "Bivariate analysis of drought duration and severity for irrigation planning," Agricultural Water Management, Elsevier, vol. 229(C).
    10. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    11. Jincy Rose M.A & Chithra N.R, 2023. "Application of Copulas in Hydrometeorological Drought Risk Analysis Under Climate Change Scenarios- a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5399-5429, November.
    12. Nurulkamal Masseran, 2021. "Modeling the Characteristics of Unhealthy Air Pollution Events: A Copula Approach," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    13. Suvro Aon & Sujata Biswas, 2024. "Bivariate Assessment of Hydrological Drought of a Semi-Arid Basin and Investigation of Drought Propagation Using a Novel Cross Wavelet Transform Based Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2977-3005, June.
    14. Pedro H. L. Alencar & Eva N. Paton, 2025. "Which droughts are becoming more frequent? A copula entropy analysis on the return period of droughts in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 543-565, January.
    15. Desalegn Edossa & Mukand Babel & Ashim Das Gupta, 2010. "Drought Analysis in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1441-1460, May.
    16. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    17. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    18. Rong Gan & Shuqian Gu & Xiaoxia Tong & Jinqiang Lu & Hui Tang, 2024. "A nonparametric standardized runoff index for characterizing hydrological drought in the Shaying River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2233-2253, February.
    19. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    20. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2025. "Developing a Risk Management Framework for Agricultural Water Systems Using Fuzzy Dynamic Bayesian Networks and Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3577-3599, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:12:d:10.1007_s11269-023-03586-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.