IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03269-z.html
   My bibliography  Save this article

Application of the Coupled Simulation–optimization Method for the Optimum Cut-off Design Under a Hydraulic Structure

Author

Listed:
  • Waqed H. Hassan

    (University of Kerbala)

  • Hussein H. Hussein

    (University of Warith Al-Anbiyaa)

  • Duaa H. Khashan

    (University of Kerbala)

  • Musa H. Alshammari

    (University of Kerbala)

  • Basim K. Nile

    (University of Kerbala)

Abstract

A Genetic Algorithm model, coupled with Finite Element Programming (GA-FEP), has been developed to create an optimal design for hydraulic structures to address seepage problems. While the objective function of the optimization model was to minimize the construction costs of the hydraulic structure, the main constraints were to satisfy safety factors concerning uplift pressure and exit gradient. The GA-FEP model proposed here meets the requirements of an optimal hydraulic design in two stages. Firstly, a validated numerical model coded using Finite-element Programming (FEP), was used to analyze seepage problems. This was followed by application of Genetic Algorithm (GA) and finite-element programming (FEP) to establish the optimum depth and location for cut-offs. A MATLAB programming code was used to create the link between the numerical and optimization model, creating a simulation–optimization (S–O) model. The effects of hydraulic conductivity and anisotropic ratios on the hydraulic structure design, were also investigated. The results indicate that the proposed GA-FEP model will provide a safe, efficient and economical hydraulic cut-off design. Evaluation of the model revealed acceptable agreement between expected and simulated seepage parameters pertinent to the hydraulic structure design.

Suggested Citation

  • Waqed H. Hassan & Hussein H. Hussein & Duaa H. Khashan & Musa H. Alshammari & Basim K. Nile, 2022. "Application of the Coupled Simulation–optimization Method for the Optimum Cut-off Design Under a Hydraulic Structure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4619-4636, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03269-z
    DOI: 10.1007/s11269-022-03269-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03269-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03269-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farzin Salmasi & Meysam Nouri & John Abraham, 2020. "Upstream Cutoff and Downstream Filters to Control of Seepage in Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4271-4288, October.
    2. Waqed H. Hassan & Musa H. Jassem & Safaa S. Mohammed, 2018. "A GA-HP Model for the Optimal Design of Sewer Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 865-879, February.
    3. Nafiseh Khoramshokooh & Mehdi Veiskarami & Mohammad Reza Nikoo & Somayeh Pourvahedi Roshandeh, 2018. "Multi-Objective Hydraulic Optimization of Diversion Dam’s Cut-Off," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3723-3736, September.
    4. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    2. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    3. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    4. Frederick Chou & Hao-Chih Lee & William Yeh, 2013. "Effectiveness and Efficiency of Scheduling Regional Water Resources Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 665-693, February.
    5. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    6. D. Haro & J. Paredes & A. Solera & J. Andreu, 2012. "A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4059-4071, November.
    7. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    8. Lihua Chen & Jing Yu & Jin Teng & Hang Chen & Xiang Teng & Xuefang Li, 2022. "Optimizing Joint Flood Control Operating Charts for Multi–reservoir System Based on Multi–group Piecewise Linear Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3305-3325, July.
    9. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    10. Zhong-kai Feng & Wen-jing Niu & Zhi-qiang Jiang & Hui Qin & Zhen-guo Song, 2020. "Monthly Operation Optimization of Cascade Hydropower Reservoirs with Dynamic Programming and Latin Hypercube Sampling for Dimensionality Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2029-2041, April.
    11. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    12. Evangelos Rozos, 2019. "Machine Learning, Urban Water Resources Management and Operating Policy," Resources, MDPI, vol. 8(4), pages 1-13, November.
    13. Raj Singh, 2011. "Design of Barrages with Genetic Algorithm Based Embedded Simulation Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 409-429, January.
    14. Emanuele Quaranta & Manuel Bonjean & Damiano Cuvato & Christophe Nicolet & Matthieu Dreyer & Anthony Gaspoz & Samuel Rey-Mermet & Bruno Boulicaut & Luigi Pratalata & Marco Pinelli & Giuseppe Tomaselli, 2020. "Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems," Sustainability, MDPI, vol. 12(21), pages 1-78, October.
    15. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    16. Qiang Wang & Wei Ding & Yan Wang, 2018. "Optimization of Multi-Reservoir Operating Rules for a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4543-4559, November.
    17. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    18. Claudio Arena & Marcella Cannarozzo & Mario Mazzola, 2014. "Screening Investments to Reduce the Risk of Hydrologic Failures in the Headwork System Supplying Apulia (Italy) – Role of Economic Evaluation and Operation Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1251-1275, March.
    19. Xin-Yu Wan & Ping-An Zhong & Emmanuel Appiah-Adjei, 2014. "Variable Sets and Fuzzy Rating Interval for Water Allocation Options Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2833-2849, August.
    20. Yang Peng & Changming Ji & Roy Gu, 2014. "A Multi-Objective Optimization Model for Coordinated Regulation of Flow and Sediment in Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4019-4033, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03269-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.