IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03266-2.html
   My bibliography  Save this article

Evaluation of Four Tree Algorithms in Predicting and Investigating the Changes in Aquifer Depth

Author

Listed:
  • Seyed Hassan Mirhashemi

    (University of Zabol)

  • Farhad Mirzaei

    (University of Tehran)

  • Parviz Haghighat Jou

    (University of Zabol)

  • Mehdi Panahi

    (University of Zanjan)

Abstract

One of the key elements in improved management and better planning for aquifer maintenance is the ability to predict changes in aquifer depth. In order to forecast changes in aquifer depth in Qazvin plain, four methods, including Classification and Regression Tree (CART), Reduced Error Pruning Trees (RepTree), M5-Pruned (M5P), and M5Rule, were used in this work. The absolute mean error (MAE) and coefficient of determination (R2) data show that the CART algorithm performs better than other algorithms at forecasting changes in aquifer depth. The CART algorithm's prediction findings showed that the aquifer's behavior in the two seasons was entirely different. In the first stage, which began in November and continued through April, there was an annual average depth of 0.045 m. The aquifer depth has been greatly influenced by rising precipitation and falling air temperature. The aquifer experiences an average decline of 0.15 m in the second portion, which runs from May to October. Aquifer depth has significantly decreased as a result of declining natural water supplies and rising agricultural water use. It is advised to utilize a crop scheme with reduced water need when rainfall reduces due to the strong effect of changes in aquifer depth from rainfall with a delay of one to three months ago.

Suggested Citation

  • Seyed Hassan Mirhashemi & Farhad Mirzaei & Parviz Haghighat Jou & Mehdi Panahi, 2022. "Evaluation of Four Tree Algorithms in Predicting and Investigating the Changes in Aquifer Depth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4607-4618, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03266-2
    DOI: 10.1007/s11269-022-03266-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03266-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03266-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuil, Linda & Carr, Gemma & Prskawetz, Alexia & Salinas, José Luis & Viglione, Alberto & Blöschl, Günter, 2019. "Learning from the Ancient Maya: Exploring the Impact of Drought on Population Dynamics," Ecological Economics, Elsevier, vol. 157(C), pages 1-16.
    2. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    3. Sina Sadeghfam & Yousef Hassanzadeh & Rahman Khatibi & Ata Allah Nadiri & Marjan Moazamnia, 2019. "Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1123-1145, February.
    4. R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    2. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    3. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    4. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    5. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
    6. Fan, Qiuyan & Hajiyeva, Aytan Merdan, 2022. "Nexus between energy efficiency finance and renewable energy development: Empirical evidence from G-7 economies," Renewable Energy, Elsevier, vol. 195(C), pages 1077-1086.
    7. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    8. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    9. Jianhua Xu & Yaning Chen & Weihong Li & Qin Nie & Chunan Song & Chunmeng Wei, 2014. "Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2523-2537, July.
    10. Partha Majumder & T.I. Eldho, 2020. "Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 763-783, January.
    11. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    12. Ali Al-Maktoumi & Mohammad Mahdi Rajabi & Slim Zekri & Chefi Triki, 2021. "A Probabilistic Multiperiod Simulation–Optimization Approach for Dynamic Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3447-3462, September.
    13. Vinit Sehgal & Mukesh Tiwari & Chandranath Chatterjee, 2014. "Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling for Daily River Discharge Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2793-2811, August.
    14. Adnan Bashir & Muhammad Ahmed Shehzad & Ijaz Hussain & Muhammad Ishaq Asif Rehmani & Sajjad Haider Bhatti, 2019. "Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5121-5136, December.
    15. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    16. Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
    17. Zaw Latt & Hartmut Wittenberg & Brigitte Urban, 2015. "Clustering Hydrological Homogeneous Regions and Neural Network Based Index Flood Estimation for Ungauged Catchments: an Example of the Chindwin River in Myanmar," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 913-928, February.
    18. Cremades, Roger & Sanchez-Plaza, Anabel & Hewitt, Richard J & Mitter, Hermine & Baggio, Jacopo A. & Olazabal, Marta & Broekman, Annelies & Kropf, Bernadette & Tudose, Nicu Constantin, 2021. "Guiding cities under increased droughts: The limits to sustainable urban futures," Ecological Economics, Elsevier, vol. 189(C).
    19. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    20. Jenq-Tzong Shiau & Chian-You Huang, 2014. "Detecting Multi-Purpose Reservoir Operation Induced Time-Frequency Alteration Using Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3577-3590, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03266-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.