IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i8d10.1007_s11269-021-02851-1.html
   My bibliography  Save this article

Methodology to Evaluate Aquifers Water Budget Alteration Due to Climate Change Impact on the Snow Fraction

Author

Listed:
  • José-Luis Molina

    (IGA Research Group, University of Salamanca)

  • Susana Lagüela

    (University of Salamanca)

  • Santiago Zazo

    (IGA Research Group, University of Salamanca)

Abstract

This paper aims to propose a methodology to evaluate and quantify perturbed groundwater budgets considering the projected reduction of Average Snow Fraction of Surface Runoff (ASFSR). Future groundwater budgets are generated considering different CC temporal Scenarios, RCMs, as well as the status of each Groundwater Body (GwB). The proposed methodology is applied to the Central Mountain Range of Iberian Peninsula (Avila Province). Existing studies show a drastic Reduction on Snow Melting (RSM) and on Cumulative Snow Volume (CSV). This leads to a huge reduction of Average Snow Fraction of Surface Runoff (ASFSR) and on groundwater availability calculated through the indicator Perturbed Exploitation Index (PEI). There are important differences depending on the RCM used, on the temporal CC Scenario and on the GwB considered. Main difficulties and challenges comprise the lack of field data and rigorous studies on modelling of groundwater hydrodynamic modelling. Despite of that, research results show a robust and generalized increase in all Exploitation Indexes (EI). EI increase is of 4.17 % for IP1 (Short Term) RCP 4.5, 14.94 % for IP2 (Medium Term) RCP 4.5, 17.65 % for IP3 (Long Term) RCP 4.5. On the other hand, there is an increase of 9.89 % for IP1 RCP 8.5, 19.05 % for IP2 RCP 8.5 and 35.14 % for IP3 RCP 8.5. Thus, there is a generalised and very important decrease of recharge (PARR) of 59.03 % for IP1 RCP 4.5, 88.97 % for IP2 RCP 4.5, 90.02 % for IP3. Likewise, for RCP 8.5, there is a decrease of 72.69 % for IP1 RCP 8.5, 88.97 % for IP2 RCP 8.5 and 97.90 % for IP3.

Suggested Citation

  • José-Luis Molina & Susana Lagüela & Santiago Zazo, 2021. "Methodology to Evaluate Aquifers Water Budget Alteration Due to Climate Change Impact on the Snow Fraction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2569-2583, June.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02851-1
    DOI: 10.1007/s11269-021-02851-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02851-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02851-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fairouz Slama & Emna Gargouri-Ellouze & Rachida Bouhlila, 2020. "Impact of rainfall structure and climate change on soil and groundwater salinization," Climatic Change, Springer, vol. 163(1), pages 395-413, November.
    2. Jose-Luis Molina & Sergio Martos-Rosillo & Crisanto Martín-Montañés & Suzanne Pierce, 2012. "The Social Sustainable Aquifer Yield: An Indicator for the Analysis and Assessment of the Integrated Aquifers Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2951-2971, August.
    3. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    4. Lauffenburger, Zachary H. & Gurdak, Jason J. & Hobza, Chris & Woodward, Duane & Wolf, Cassandra, 2018. "Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Borek & Andrzej Bogdał & Tomasz Kowalik, 2021. "Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study," Land, MDPI, vol. 10(9), pages 1-22, September.
    2. Lucia De Stefano & Pedro Martínez-Santos & Fermín Villarroya & Daniel Chico & Luis Martínez-Cortina, 2013. "Easier Said Than Done? The Establishment of Baseline Groundwater Conditions for the Implementation of the Water Framework Directive in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2691-2707, May.
    3. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    4. Azhgaliyeva, Dina & Rahut, Dil, 2022. "Promoting Green Buildings: Barriers, Solutions, and Policies," ADBI Working Papers 1331, Asian Development Bank Institute.
    5. Riwaz Kumar Adhikari & Abdullah Gokhan Yilmaz & Bandita Mainali & Phil Dyson & Monzur Alam Imteaz, 2022. "Methods of Groundwater Recharge Estimation under Climate Change: A Review," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    6. Kaown, Dugin & Koh, Dong-Chan & Yu, Hakyeong E. & Kim, Heejung & Yoon, Yoon-Yeol & Yum, Byoung-Woo & Lee, Kang-Kun, 2020. "Combined effects of recharge and hydrogeochemical conditions on nitrate in groundwater of a highland agricultural basin based on multiple environmental tracers," Agricultural Water Management, Elsevier, vol. 240(C).
    7. Satyendra Kumar & Bhaskar Narjary & Vivekanand & Adlul Islam & R. K. Yadav & S. K. Kamra, 2022. "Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India," Climatic Change, Springer, vol. 173(1), pages 1-30, July.
    8. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    9. Mariana La Pasta Cordeiro & Gerson Cardoso Silva Junior & Claudine Pereira Dereczynski & Zelia Maria Peixoto Chrispim & Maria Teresa Condesso de Melo, 2021. "Analysis of indicators of climate extremes and projection of groundwater recharge in the northern part of the Rio de Janeiro state, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18311-18336, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02851-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.