IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i15d10.1007_s11269-018-2059-5.html
   My bibliography  Save this article

Bridging Science and Policy in Water-Energy-Food Nexus: Using the Q-Nexus Model for Informing Policy Making

Author

Listed:
  • Ali Karnib

    (Lebanese University)

Abstract

Water, energy and food (WEF) systems are highly interconnected and they directly and indirectly affect one another. Science based tools that quantify the direct and indirect interconnections between water, energy and food systems are essential for informing effective WEF policy-making. The Q-Nexus Model is a mathematically-based quantitative WEF nexus assessment tool that serves as platform to quantify, simulate and optimize water, energy and food as interconnected systems of resources. This paper presents a generic scenario-based framework of using Q-Nexus Model for informing about the nexus effects that need to be reflected in the WEF planning and policy-making settings. Firstly, the technical features of the Q-Nexus Model and its capability to evaluate the direct and indirect quantitative effects are introduced. Secondly, the use of the Q-Nexus Model to quantify and simulate numerous key challenges and policy options are then presented. At the practical level, a numerical experiment is presented, and results are discussed. Lastly, the conclusions and further developments are presented.

Suggested Citation

  • Ali Karnib, 2018. "Bridging Science and Policy in Water-Energy-Food Nexus: Using the Q-Nexus Model for Informing Policy Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4895-4909, December.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2059-5
    DOI: 10.1007/s11269-018-2059-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2059-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2059-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Karnib, 2016. "A methodological approach for sustainability assessment: application to the assessment of the sustainable water resources withdrawals," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 19(4), pages 402-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daohan Huang & Zihao Shen & Chengshuang Sun & Guijun Li, 2021. "Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1673-1688, April.
    2. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Aries Purwanto & Janez Sušnik & Franciscus X. Suryadi & Charlotte de Fraiture, 2021. "Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    4. Junfei Chen & Tonghui Ding & Huimin Wang & Xiaoya Yu, 2019. "Research on Total Factor Productivity and Influential Factors of the Regional Water–Energy–Food Nexus: A Case Study on Inner Mongolia, China," IJERPH, MDPI, vol. 16(17), pages 1-21, August.
    5. Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
    6. Mohammad Tamim Kashifi & Fahad Saleh Mohammed Al-Ismail & Shakhawat Chowdhury & Hassan M. Baaqeel & Md Shafiullah & Surya Prakash Tiwari & Syed Masiur Rahman, 2022. "Water-Energy-Food Nexus Approach to Assess Crop Trading in Saudi Arabia," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    7. Kennedy Muthee & Lalisa Duguma & Judith Nzyoka & Peter Minang, 2021. "Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    8. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    9. Radmehr, Riza & Ghorbani, Mohammad & Ziaei, Ali Naghi, 2021. "Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Hongfang Li & Huixiao Wang & Yaxue Yang & Ruxin Zhao, 2021. "Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    11. Samaneh Ghafoori-Kharanagh & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "Participatory Water-Food-Energy Nexus Approach for Evaluation and Design of Groundwater Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3481-3495, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2059-5. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.