IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i10p3519-3533.html
   My bibliography  Save this article

Fuzzy Logic for Rainfall-Runoff Modelling Considering Soil Moisture

Author

Listed:
  • Gokmen Tayfur
  • Luca Brocca

Abstract

This study developed Mamdani-type fuzzy logic model to simulate daily discharge as a function of soil moisture measured at three different depths (10, 20 and 40 cm) and rainfall. The model was applied to 13 km 2 size Colorso Basin in central Italy for a period from October 2002 to April 2004. For each variable of soil moisture, rainfall, and discharge, 9 fuzzy subsets were employed while 30 fuzzy rules, relating the input variables (soil moisture and rainfall) to the output variable (discharge), were optimized. The model employed the min inferencing, max composition, and the centroid method. The model application results revealed that Mamdani-type fuzzy logic model can be employed to incorporate soil moisture along with rainfall to simulate discharge. Using soil moisture measured at 40 cm soil depth along with rainfall produced better simulation of discharge with NS = 0.68 and R = 0.82. The performance of the model was also tested against a conceptual rainfall-runoff model of MISDc (Modello Idrologico Semi-Distribuito in continuo). MISDc couples an event-specific component with a module for continuous time soil water balance for taking into account the variable antecedent wetness conditions. The MISDc model requires estimation of seven parameters and the measurements of the hydrometeorological variables such as rainfall and air temperature. The comparative study revealed that fuzzy model performs better in capturing runoff peak rates and overall trend of high and small flooding events. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Gokmen Tayfur & Luca Brocca, 2015. "Fuzzy Logic for Rainfall-Runoff Modelling Considering Soil Moisture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3519-3533, August.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:10:p:3519-3533
    DOI: 10.1007/s11269-015-1012-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1012-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1012-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renato Morbidelli & Corrado Corradini & Carla Saltalippi & Luca Brocca, 2012. "Initial Soil Water Content as Input to Field-Scale Infiltration and Surface Runoff Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1793-1807, May.
    2. X. Wang & R. Zhao & Y. Hao, 2011. "Flood Control Operations Based on the Theory of Variable Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 777-792, February.
    3. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.
    4. A. kumar & Manish Goyal & C. Ojha & R. Singh & P. Swamee & R. Nema, 2013. "Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 911-925, February.
    5. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    6. D. Panigrahi & P. Mujumdar, 2000. "Reservoir Operation Modelling with Fuzzy Logic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(2), pages 89-109, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riya Dutta & Rajib Maity & Parul Patel, 2022. "Short and Medium Range Forecast of Soil Moisture for the Different Climatic Regions of India Using Temporal Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 235-251, January.
    2. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    3. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    4. Ahmet Emre Tekeli & Hesham Fouli, 2017. "Reducing False Flood Warnings of TRMM Rain Rates Thresholds over Riyadh City, Saudi Arabia by Utilizing AMSR-E Soil Moisture Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1243-1256, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Mohammad Rezapour Tabari & Mohsen Mazak Mari, 2016. "The Integrated Approach of Simulation and Optimization in Determining the Optimum Dimensions of Canal for Seepage Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1271-1292, February.
    2. G. Zucco & G. Tayfur & T. Moramarco, 2015. "Reverse Flood Routing in Natural Channels using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4241-4267, September.
    3. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    4. Chang-ming Ji & Ting Zhou & Hai-tao Huang, 2014. "Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2435-2451, July.
    5. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    6. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    7. Guang Yang & Shenglian Guo & Liping Li & Xingjun Hong & Le Wang, 2016. "Multi-Objective Operating Rules for Danjiangkou Reservoir Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1183-1202, February.
    8. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    9. Banafsheh Nematollahi & Mohammad Reza Nikoo & Amir H. Gandomi & Nasser Talebbeydokhti & Gholam Reza Rakhshandehroo, 2022. "A Multi-criteria Decision-making Optimization Model for Flood Management in Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4933-4949, October.
    10. Rama Mehta & Sharad Jain, 2009. "Optimal Operation of a Multi-Purpose Reservoir Using Neuro-Fuzzy Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 509-529, February.
    11. M. A. Ghorbani & R. Khatibi & V. Karimi & Zaher Mundher Yaseen & M. Zounemat-Kermani, 2018. "Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4201-4215, October.
    12. Benya Suntaranont & Somrawee Aramkul & Manop Kaewmoracharoen & Paskorn Champrasert, 2020. "Water Irrigation Decision Support System for Practical Weir Adjustment Using Artificial Intelligence and Machine Learning Techniques," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    13. Guang Yang & Shenglian Guo & Pan Liu & Xiaofeng Liu & Jiabo Yin, 2020. "Heuristic Input Variable Selection in Multi-Objective Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 617-636, January.
    14. Mahsa Amirabdollahian & Morteza Mokhtari, 2015. "Optimal Design of Pumped Water Distribution Networks with Storage Under Uncertain Hydraulic Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2637-2653, June.
    15. Izabela Rojek, 2014. "Models for Better Environmental Intelligent Management within Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3875-3890, September.
    16. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    17. Bhabagrahi Sahoo & Anil Lohani & Rohit Sahu, 2006. "Fuzzy Multiobjective and Linear Programming Based Management Models for Optimal Land-Water-Crop System Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 931-948, December.
    18. D. Regulwar & Jyotiba Gurav, 2012. "Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3871-3892, October.
    19. Qingqing Li & Shuo Ouyang, 2015. "Research on multi-objective joint optimal flood control model for cascade reservoirs in river basin system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2097-2115, July.
    20. Asmadi Ahmad & Siti Fatin Mohd Razali & Zawawi Samba Mohamed & Ahmed El-shafie, 2016. "The Application of Artificial Bee Colony and Gravitational Search Algorithm in Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2497-2516, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:10:p:3519-3533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.