IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i14p3961-3985.html
   My bibliography  Save this article

Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model

Author

Listed:
  • Dave Deckers
  • Martijn Booij
  • Tom Rientjes
  • Maarten Krol

Abstract

This study attempts to examine if catchment variability favours regionalisation by principles of catchment similarity. Our work combines calibration of a simple conceptual model for multiple objectives and multi-regression analyses to establish a regional model between model sensitive parameters and physical catchment characteristics (PCCs). The objective is to test robustness of regionalisation by assessing if generalisation of a wide range of climatic, topographic and physiographic settings in a regional model favours simulation of stream flow at ungauged catchments. Constraints in this work are very stringent performance measures for selection of catchments to establish the regional model and the selection of only PCCs that are available through the database of the National River Flow Archive in the United Kingdom. As such some PCCs have been ignored that have proven to be effective in other studies. For this study 56 well-gauged catchments in England and Wales are used. For model calibration and runoff simulation of ungauged catchments the HBV model is applied. Optimum parameter sets are derived for 48 catchments through Monte Carlo Simulation using an 8-year simulation period. This study aims to adequately simulate all aspects of the hydrograph at the ungauged catchment and therefore four single objective functions are combined in a multi-objective function. After calibration, 17 catchments that are widely spread over England and Wales are selected to establish relationships for seven selected model parameters using 14 PCCs (area, mean elevation, hypsometric integral, catchment shape, standard average annual rainfall, five types of land use and four classes of hydrogeology). Single and multiple regression analysis are applied to identify these relationships. For six model parameters statistically significant relationships could be established three of which are plausible on the basis of hydrologic interpretation. The established relationships are validated at eight gauged catchments that are spread over the UK and cover a large range of values of catchment descriptors. These catchments are assumed ungauged and results revealed that, in general, model parameters determined by the established regional relationships do not perform better as compared to default parameter values. Similar results are obtained for additional validation runs using catchments that are not used in the regionalisation procedure. Since these parameters are based on model performance assessments in a wide range of catchment settings, this suggests that large variability in settings of PCCs does not favour regionalisation. Therefore, for selected catchments the applicability of regionalisation by principles of catchment similarity for HBV model parameters may be questioned. Copyright The Author(s) 2010

Suggested Citation

  • Dave Deckers & Martijn Booij & Tom Rientjes & Maarten Krol, 2010. "Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3961-3985, November.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:14:p:3961-3985
    DOI: 10.1007/s11269-010-9642-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9642-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9642-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Engeland & H. Hisdal, 2009. "A Comparison of Low Flow Estimates in Ungauged Catchments Using Regional Regression and the HBV-Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2567-2586, September.
    2. Pasquale Cutore & Gabriella Cristaudo & Alberto Campisano & Carlo Modica & Antonino Cancelliere & Giuseppe Rossi, 2007. "Regional Models for the Estimation of Streamflow Series in Ungauged Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 789-800, May.
    3. Fayez Abdulla & Tamer Eshtawi & Hamed Assaf, 2009. "Assessment of the Impact of Potential Climate Change on the Water Balance of a Semi-arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2051-2068, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Guo & Jianzhong Zhou & Qiang Zou & Yi Liu & Lixiang Song, 2013. "A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2923-2946, June.
    2. Ting Yang & Quanjiu Wang & Lijun Su & Laosheng Wu & Guangxu Zhao & Yanli Liu & Pengyu Zhang, 2016. "An Approximately Semi-Analytical Model for Describing Surface Runoff of Rainwater Over Sloped Land," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3935-3948, September.
    3. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    4. J. Vicente-Guillén & E. Ayuga-Telléz & D. Otero & J. Chávez & F. Ayuga & A. García, 2012. "Performance of a Monthly Streamflow Prediction Model for Ungauged Watersheds in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3767-3784, October.
    5. H. Kim, 2014. "Adequacy of a Multi-objective Regional Calibration Method Incorporating a Sequential Regionalisation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5507-5526, December.
    6. Sawano, Shinji & Hotta, Norifumi & Tanaka, Nobuaki & Tsuboyama, Yoshio & Suzuki, Masakazu, 2015. "Development of a simple forest evapotranspiration model using a process-oriented model as a reference to parameterize data from a wide range of environmental conditions," Ecological Modelling, Elsevier, vol. 309, pages 93-109.
    7. O. Belmar & J. Velasco & F. Martínez-Capel & M. Peredo-Parada & T. Snelder, 2012. "Do Environmental Stream Classifications Support Flow Assessments in Mediterranean Basins?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3803-3817, October.
    8. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    9. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    10. Minglong Dai & Jianzhong Zhou & Xiang Liao, 2016. "Research on Combination Forecast Mode of Conceptual Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4483-4499, October.
    11. Koppuravuri Ramabrahmam & Venkata Reddy Keesara & Raghavan Srinivasan & Deva Pratap & Venkataramana Sridhar, 2021. "Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    12. Juliana Mendes & Rodrigo Maia, 2016. "Hydrologic Modelling Calibration for Operational Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5671-5685, December.
    13. H. S. Kim, 2016. "Potential Improvement of the Parameter Identifiability in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3207-3228, July.
    14. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    2. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    3. Saeid Eslamian & Mehdi Ghasemizadeh & Monireh Biabanaki & Mansoor Talebizadeh, 2010. "A Principal Component Regression Method for Estimating Low Flow Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2553-2566, September.
    4. Amani Alfarra & Eric Kemp-Benedict & Heinz Hötzl & Nayif Sader & Ben Sonneveld, 2011. "A Framework for Wastewater Reuse in Jordan: Utilizing a Modified Wastewater Reuse Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1153-1167, March.
    5. Paolo Vezza & Claudio Comoglio & Maurizio Rosso & Alberto Viglione, 2010. "Low Flows Regionalization in North-Western Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4049-4074, November.
    6. Goksel Ezgi Guzey & Bihrat Önöz, 2023. "Performance Assessment Comparison between Physically Based and Regression Hydrological Modelling: Case Study of the Euphrates–Tigris Basin," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    7. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    8. Jawad Taleb Al-Bakri & Mohammad Salahat & Ayman Suleiman & Marwan Suifan & Mohammad R. Hamdan & Saeb Khresat & Tarek Kandakji, 2013. "Impact of Climate and Land Use Changes on Water and Food Security in Jordan: Implications for Transcending “The Tragedy of the Commons”," Sustainability, MDPI, vol. 5(2), pages 1-25, February.
    9. Gokmen Tayfur & Vijay Singh, 2011. "Predicting Mean and Bankfull Discharge from Channel Cross-Sectional Area by Expert and Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1253-1267, March.
    10. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    11. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    12. Jordan Clayton & Jason Kean, 2010. "Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3641-3664, October.
    13. Mingyong Cai & Shengtian Yang & Hongjuan Zeng & Changsen Zhao & Shudong Wang, 2014. "A Distributed Hydrological Model Driven by Multi-Source Spatial Data and Its Application in the Ili River Basin of Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2851-2866, August.
    14. Ye Tian & Yue-Ping Xu & Xu-Jie Zhang, 2013. "Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2871-2888, June.
    15. March, Hug & Therond, Olivier & Leenhardt, Delphine, 2012. "Water futures: Reviewing water-scenario analyses through an original interpretative framework," Ecological Economics, Elsevier, vol. 82(C), pages 126-137.
    16. Martin Hanel & Magdalena Mrkvičková & Petr Máca & Adam Vizina & Pavel Pech, 2013. "Evaluation of Simple Statistical Downscaling Methods for Monthly Regional Climate Model Simulations with Respect to the Estimated Changes in Runoff in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5261-5279, December.
    17. David J. Peres & Antonino Cancelliere, 2016. "Environmental Flow Assessment Based on Different Metrics of Hydrological Alteration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5799-5817, December.
    18. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    19. Tran Ty & Kengo Sunada & Yutaka Ichikawa & Satoru Oishi, 2012. "Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1387-1407, March.
    20. Konstantina Risva & Dionysios Nikolopoulos & Andreas Efstratiadis & Ioannis Nalbantis, 2018. "A Framework for Dry Period Low Flow Forecasting in Mediterranean Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4911-4932, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:14:p:3961-3985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.