IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i7p797-821.html
   My bibliography  Save this article

Definition of Wetland Typology for Hydro-morphological Elements Within the WFD. A Case Study from Southern Spain

Author

Listed:
  • Miguel Rodríguez-Rodríguez
  • José Benavente

Abstract

The European Water Framework Directive (WFD) constitutes a new view of water resources management and provides a challenge in the development of new and accurate methodologies for the classification of water bodies. It is necessary to improve and develop approaches based upon scientific knowledge in order to achieve requirements of comparability throughout European waters. This contribution focuses on the development of a classification typology for a series of wetlands in southern Spain, based on hydromorphological elements. Spanish wetlands and playa-lakes are usually small (>50 ha) and temporary and, for that reason, only indirectly addressed in the WFD with respect to the status of ground water dependent ecosystems. The WFD does not provide any guidance on how to react to significant pressures and impacts on such ecosystems. In order to manage, protect and, if necessary, restore this type of water bodies, it is important to classify them according to the main factors involved in their hydrological functioning. The water balance of the playa-lakes has proved to be a valuable tool to determine the hydrological regime in a semi-arid climate. Surface-groundwater relationships are key elements in determining the water balance, but there are other elements that could indicate or corroborate the hydrological functioning of a playa-lake, such as hydro-chemical markers or morphometric indexes. The present work could constitute the basis for a discussion document for other regions and countries throughout Europe and elsewhere. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Miguel Rodríguez-Rodríguez & José Benavente, 2008. "Definition of Wetland Typology for Hydro-morphological Elements Within the WFD. A Case Study from Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 797-821, July.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:7:p:797-821
    DOI: 10.1007/s11269-007-9193-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-007-9193-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-007-9193-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ireson & C. Makropoulos & C. Maksimovic, 2006. "Water Resources Modelling under Data Scarcity: Coupling MIKE BASIN and ASM Groundwater Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(4), pages 567-590, August.
    2. Rutger Brugge & Jan Rotmans, 2007. "Towards transition management of European water resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 249-267, January.
    3. Ilke Borowski & Matt Hare, 2007. "Exploring the Gap Between Water Managers and Researchers: Difficulties of Model-Based Tools to Support Practical Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1049-1074, July.
    4. Anker Højberg & Jens Refsgaard & Frans Geer & Lisbeth Jørgensen & István Zsuffa, 2007. "Use of Models to Support the Monitoring Requirements in the Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1649-1672, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    2. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    3. Dedi Liu & Shenglian Guo & Pan Liu & Hui Zou & Xingjun Hong, 2019. "Rational Function Method for Allocating Water Resources in the Coupled Natural-Human Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 57-73, January.
    4. Jos Timmermans, 2008. "Punctuated equilibrium in a non-linear system of action," Computational and Mathematical Organization Theory, Springer, vol. 14(4), pages 350-375, December.
    5. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    6. Katherine Daniell & Jean-Daniel Rinaudo & Noel Wai Wah Chan & Céline Nauges & Quentin Grafton, 2015. "Understanding and Managing Urban Water in Transition," Post-Print hal-01290502, HAL.
    7. Madsen, Herle Mo & Brown, Rebekah & Elle, Morten & Mikkelsen, Peter Steen, 2017. "Social construction of stormwater control measures in Melbourne and Copenhagen: A discourse analysis of technological change, embedded meanings and potential mainstreaming," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 198-209.
    8. Fjalar J. De Haan & Briony C. Rogers, 2019. "The Multi-Pattern Approach for Systematic Analysis of Transition Pathways," Sustainability, MDPI, vol. 11(2), pages 1-30, January.
    9. Liam James Heaphy, 2018. "The challenges of aligning the scales of urban climate science and climate policy in London and Manchester," Environment and Planning C, , vol. 36(4), pages 609-628, June.
    10. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.
    11. V. Alarcon & D. Johnson & W. McAnally & J. Zwaag & D. Irby & J. Cartwright, 2014. "Nested Hydrodynamic Modeling of a Coastal River Applying Dynamic-Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3227-3240, August.
    12. Marc Spiller & Brian McIntosh & Roger Seaton & Paul Jeffrey, 2013. "Implementing Pollution Source Control—Learning from the Innovation Process in English and Welsh Water Companies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 75-94, January.
    13. Daniel C. Kenny & Juan Castilla-Rho, 2022. "No Stakeholder Is an Island: Human Barriers and Enablers in Participatory Environmental Modelling," Land, MDPI, vol. 11(3), pages 1-26, February.
    14. V. Kanakoudis & S. Tsitsifli & T. Azariadi, 2015. "Overview of the River Basin Management Plans Developed in Greece Under the Context of the Water Framework Directive 2000/60/EC Focusing on the Economic Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3149-3174, July.
    15. Guido Maria Bazzani, 2013. "Tools and models to support wa ter management in agriculture under policy and climate change. The Trebbia irrigation district experience," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 125-146.
    16. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    17. Lam, Q.D. & Schmalz, B. & Fohrer, N., 2010. "Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model," Agricultural Water Management, Elsevier, vol. 97(2), pages 317-325, February.
    18. Arjan Hijdra & Jos Arts & Johan Woltjer, 2014. "Do We Need to Rethink Our Waterways? Values of Ageing Waterways in Current and Future Society," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2599-2613, July.
    19. Raffaele Giordano & Marcela Brugnach & Irene Pluchinotta, 2017. "Ambiguity in Problem Framing as a Barrier to Collective Actions: Some Hints from Groundwater Protection Policy in the Apulia Region," Group Decision and Negotiation, Springer, vol. 26(5), pages 911-932, September.
    20. K. Papapetridis & E. Paleologos, 2012. "Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2673-2688, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:7:p:797-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.