IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v27y2019i2d10.1007_s11750-019-00511-7.html
   My bibliography  Save this article

Comments on: Perspectives on integer programming for time-dependent models

Author

Listed:
  • Sanjeeb Dash

    (IBM Research)

Abstract

No abstract is available for this item.

Suggested Citation

  • Sanjeeb Dash, 2019. "Comments on: Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 174-177, July.
  • Handle: RePEc:spr:topjnl:v:27:y:2019:i:2:d:10.1007_s11750-019-00511-7
    DOI: 10.1007/s11750-019-00511-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-019-00511-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-019-00511-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amos Levin, 1971. "Scheduling and Fleet Routing Models for Transportation Systems," Transportation Science, INFORMS, vol. 5(3), pages 232-255, August.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    3. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2020. "An MDD-Based Lagrangian Approach to the Multicommodity Pickup-and-Delivery TSP," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 263-278, April.
    2. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    3. Cui, Weiwei & Yang, Yiran & Di, Lei, 2023. "Modeling and optimization for static-dynamic routing of a vehicle with additive manufacturing equipment," International Journal of Production Economics, Elsevier, vol. 257(C).
    4. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    5. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    6. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    7. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric, 2020. "A branch-and-cut algorithm for the generalized traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 286(3), pages 849-866.
    8. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    9. Vu, Duc Minh & Hewitt, Mike & Vu, Duc D., 2022. "Solving the time dependent minimum tour duration and delivery man problems with dynamic discretization discovery," European Journal of Operational Research, Elsevier, vol. 302(3), pages 831-846.
    10. Yuan Yuan & Diego Cattaruzza & Maxime Ogier & Cyriaque Rousselot & Frédéric Semet, 2021. "Mixed integer programming formulations for the generalized traveling salesman problem with time windows," 4OR, Springer, vol. 19(4), pages 571-592, December.
    11. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    12. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    13. Nossack, Jenny & Golden, Bruce & Pesch, Erwin & Zhang, Rui, 2017. "The windy rural postman problem with a time-dependent zigzag option," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1131-1142.
    14. Maria Fleischer Fauske & Carlo Mannino & Paolo Ventura, 2020. "Generalized Periodic Vehicle Routing and Maritime Surveillance," Transportation Science, INFORMS, vol. 54(1), pages 164-183, January.
    15. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    16. Gschwind, Timo & Irnich, Stefan & Rothenbächer, Ann-Kathrin & Tilk, Christian, 2018. "Bidirectional labeling in column-generation algorithms for pickup-and-delivery problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 521-530.
    17. Zhang, Ruiyou & Lu, Jye-Chyi & Wang, Dingwei, 2014. "Container drayage problem with flexible orders and its near real-time solution strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 235-251.
    18. John S. F. Lyons & Peter C. Bell & Mehmet A. Begen, 2018. "Solving the Whistler-Blackcomb Mega Day Challenge," Interfaces, INFORMS, vol. 48(4), pages 323-339, August.
    19. Ioachim, Irina & Desrosiers, Jacques & Soumis, Francois & Belanger, Nicolas, 1999. "Fleet assignment and routing with schedule synchronization constraints," European Journal of Operational Research, Elsevier, vol. 119(1), pages 75-90, November.
    20. Jeanette Schmidt & Christian Tilk & Stefan Irnich, 2023. "Exact Solution of the Vehicle Routing Problem With Drones," Working Papers 2311, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:27:y:2019:i:2:d:10.1007_s11750-019-00511-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.