IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i1d10.1007_s11749-024-00925-x.html
   My bibliography  Save this article

Rejoinder on: Shape-based functional data analysis

Author

Listed:
  • Yuexuan Wu

    (Florida State University
    University of Washington)

  • Chao Huang

    (Florida State University)

  • Anuj Srivastava

    (Florida State University)

Abstract

We express our gratitude to the authors of five comment articles for their valuable contributions, feedback, and recommendations on our discussion document (Wu et al. Test, 2023). All the reviewers acknowledged the value of our proposed research direction, which focuses on shape-based functional data analysis. They also provided insightful suggestions to enhance and expand upon these ideas. In this response, we address their comments and provide further insights.

Suggested Citation

  • Yuexuan Wu & Chao Huang & Anuj Srivastava, 2024. "Rejoinder on: Shape-based functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 73-80, March.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:1:d:10.1007_s11749-024-00925-x
    DOI: 10.1007/s11749-024-00925-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00925-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00925-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Kurtek & Anuj Srivastava & Eric Klassen & Zhaohua Ding, 2012. "Statistical Modeling of Curves Using Shapes and Related Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1152-1165, September.
    2. Wei Liu & Anuj Srivastava & Jinfeng Zhang, 2011. "A Mathematical Framework for Protein Structure Comparison," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    2. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    4. Justin Strait & Sebastian Kurtek & Emily Bartha & Steven N. MacEachern, 2017. "Landmark-Constrained Elastic Shape Analysis of Planar Curves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 521-533, April.
    5. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    6. Kelvin Gu & Debdeep Pati & David B. Dunson, 2014. "Bayesian Multiscale Modeling of Closed Curves in Point Clouds," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1481-1494, December.
    7. Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    8. Irene Epifanio & Vicent Gimeno & Ximo Gual-Arnau & M. Victoria Ibáñez-Gual, 2020. "A New Geometric Metric in the Shape and Size Space of Curves in R n," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    9. Karthik Bharath & Sebastian Kurtek & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Radiologic image‐based statistical shape analysis of brain tumours," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1357-1378, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:1:d:10.1007_s11749-024-00925-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.