IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Statistical Modeling of Curves Using Shapes and Related Features

Listed author(s):
  • Sebastian Kurtek
  • Anuj Srivastava
  • Eric Klassen
  • Zhaohua Ding
Registered author(s):

    Motivated by the problems of analyzing protein backbones, diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracts in the human brain, and other problems involving curves, in this study we present some statistical models of parameterized curves, in , in terms of combinations of features such as shape, location, scale, and orientation. For each combination of interest, we identify a representation manifold, endow it with a Riemannian metric, and outline tools for computing sample statistics on these manifolds. An important characteristic of the chosen representations is that the ensuing comparison and modeling of curves is invariant to how the curves are parameterized. The nuisance variables, including parameterization, are removed by forming quotient spaces under appropriate group actions. In the case of shape analysis, the resulting spaces are quotient spaces of Hilbert spheres, and we derive certain wrapped truncated normal densities for capturing variability in observed curves. We demonstrate these models using both artificial data and real data involving DT-MRI fiber tracts from multiple subjects and protein backbones from the Shape Retrieval Contest of Non-rigid 3D Models (SHREC) 2010 database.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 499 (September)
    Pages: 1152-1165

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1152-1165
    DOI: 10.1080/01621459.2012.699770
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1152-1165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.