IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001075.html
   My bibliography  Save this article

A Mathematical Framework for Protein Structure Comparison

Author

Listed:
  • Wei Liu
  • Anuj Srivastava
  • Jinfeng Zhang

Abstract

Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting protein functions and predicting protein structures. Many methods have been developed in the past to align two or multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different distances used to measure the similarity between protein structures, none of them are proper distances when protein structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of protein structures can reveal the population-specific variations and be helpful in improving structure classification. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions. We show that our method performs comparably with commonly used methods in protein structure classification on a large manually annotated data set. Author Summary: Protein structure comparison is important for understanding the evolutionary relationships among proteins, predicting protein functions, and predicting protein structures. Despite its importance, there have been no rigorous mathematical or statistical frameworks for protein structure comparison. One notable issue in this field is that with many different similarity measures used in comparing protein structures, none of them are proper distances when protein structures of different sequences are compared. In this study, we develop a mathematical framework for protein structure comparison by treating protein structures as three dimensional curves. A formal distance, geodesic distance, can be computed for any two protein structures. In this framework, population-specific variations within protein families can be characterized through building probability distributions for structures of protein families. The mean and covariance computed from groups of protein structures can also help to improve the classifications of protein structures. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions.

Suggested Citation

  • Wei Liu & Anuj Srivastava & Jinfeng Zhang, 2011. "A Mathematical Framework for Protein Structure Comparison," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-10, February.
  • Handle: RePEc:plo:pcbi00:1001075
    DOI: 10.1371/journal.pcbi.1001075
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001075
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001075&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.