IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i2p270-275.html
   My bibliography  Save this article

Comments on: Extensions of some classical methods in change point analysis

Author

Listed:
  • Claudia Kirch

Abstract

No abstract is available for this item.

Suggested Citation

  • Claudia Kirch, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 270-275, June.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:270-275
    DOI: 10.1007/s11749-014-0377-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0377-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0377-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marie Hušková & Claudia Kirch, 2008. "Bootstrapping confidence intervals for the change‐point of time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 947-972, November.
    2. Marie Hušková & Claudia Kirch, 2010. "A note on studentized confidence intervals for the change-point," Computational Statistics, Springer, vol. 25(2), pages 269-289, June.
    3. Christian H. Weiß, 2011. "Detecting mean increases in Poisson INAR(1) processes with EWMA control charts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 383-398, September.
    4. Zdeněk Hlávka & Marie Hušková & Claudia Kirch & Simos Meintanis, 2012. "Monitoring changes in the error distribution of autoregressive models based on Fourier methods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 605-634, December.
    5. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    6. Jürgen Franke & Claudia Kirch & Joseph Tadjuidje Kamgaing, 2012. "Changepoints in times series of counts," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(5), pages 757-770, September.
    7. Marie Hušková & Simos Meintanis, 2006. "Change Point Analysis based on Empirical Characteristic Functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 63(2), pages 145-168, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    2. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    3. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    4. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    5. Cho, Haeran & Kirch, Claudia, 2022. "Bootstrap confidence intervals for multiple change points based on moving sum procedures," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    6. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    8. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    9. Gabriela Ciuperca, 2022. "Real-time detection of a change-point in a linear expectile model," Statistical Papers, Springer, vol. 63(4), pages 1323-1367, August.
    10. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    11. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    12. Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.
    13. Barbora Peštová & Michal Pešta, 2017. "Change Point Estimation in Panel Data without Boundary Issue," Risks, MDPI, vol. 5(1), pages 1-22, January.
    14. Zhou, Mi & Wang, Huixia Judy & Tang, Yanlin, 2015. "Sequential change point detection in linear quantile regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 98-103.
    15. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    16. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    17. Gabriela Ciuperca & Zahraa Salloum, 2015. "Empirical likelihood test in a posteriori change-point nonlinear model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 919-952, November.
    18. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    19. Gabriela Ciuperca, 2018. "Test by adaptive LASSO quantile method for real-time detection of a change-point," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 689-720, August.
    20. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:270-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.