IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i4d10.1007_s00362-025-01694-x.html
   My bibliography  Save this article

Unveiling outliers with robust covariance matrix estimation: a shrinkage approach

Author

Listed:
  • S. Vijayalakshmi

    (St. Thomas College (Autonomous), Thrissur Affiliated to the University of Calicut)

  • Nicy Sebastian

    (St. Thomas College (Autonomous), Thrissur Affiliated to the University of Calicut)

  • T. A. Sajesh

    (St. Thomas College (Autonomous), Thrissur Affiliated to the University of Calicut)

Abstract

Outlier detection is a fundamental task in statistics, crucial for identifying anomalous observations that deviate significantly from the majority of the data. This article proposes a robust shrinkage covariance matrix based on the Gnanadesikan–Kettenring estimator and develops the shrinkage Gnanadesikan–Kettenring (SGK) method, a robust outlier detection technique for high dimensional datasets. The effectiveness of the SGK method for outlier detection is comprehensively evaluated using diverse metrics and scenarios through Monte Carlo simulation. The empirical study employs success rate and false detection rate to compare its performance with existing methods across various data characteristics, including correlated and uncorrelated data generated from multivariate normal, multivariate t, and multivariate exponential distributions. Results indicate that the SGK method consistently achieves a high success rate in identifying contaminated observations with a significantly lower false detection rate compared to other methods. Despite being non-affine equivariant, the SGK method maintains similar performance under affinely transformed data and exhibits exceptional resistance to contamination across datasets of varying sizes and dimensions. Real-world applicability is confirmed through performance evaluations on benchmark datasets, where the SGK method successfully identifies known outliers.

Suggested Citation

  • S. Vijayalakshmi & Nicy Sebastian & T. A. Sajesh, 2025. "Unveiling outliers with robust covariance matrix estimation: a shrinkage approach," Statistical Papers, Springer, vol. 66(4), pages 1-23, June.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01694-x
    DOI: 10.1007/s00362-025-01694-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01694-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01694-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    3. Genton, Marc G. & Ma, Yanyuan, 1999. "Robustness properties of dispersion estimators," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 343-350, October.
    4. Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.
    5. N. A. Campbell, 1980. "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 231-237, November.
    6. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Cabana & Rosa E. Lillo & Henry Laniado, 2021. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," Statistical Papers, Springer, vol. 62(4), pages 1583-1609, August.
    2. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    3. John D. Lamb & Kai-Hong Tee, 2024. "Using stochastic frontier analysis instead of data envelopment analysis in modelling investment performance," Annals of Operations Research, Springer, vol. 332(1), pages 891-907, January.
    4. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    5. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    6. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    7. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    8. Miguel, Victor de & Martín Utrera, Alberto & Nogales, Francisco J., 2013. "Parameter uncertainty in multiperiod portfolio optimization with transaction costs," DES - Working Papers. Statistics and Econometrics. WS ws132119, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Cabana Garceran del Vall, Elisa & Laniado Rodas, Henry & Lillo Rodríguez, Rosa Elvira, 2017. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," DES - Working Papers. Statistics and Econometrics. WS 24613, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    11. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    12. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    13. Taras Bodnar & Nestor Parolya & Erik Thors'en, 2022. "Two is better than one: Regularized shrinkage of large minimum variance portfolio," Papers 2202.06666, arXiv.org.
    14. Lassance, Nathan, 2021. "Maximizing the Out-of-Sample Sharpe Ratio," LIDAM Discussion Papers LFIN 2021013, Université catholique de Louvain, Louvain Finance (LFIN).
    15. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    16. Yang Yang & DeGruttola Victor, 2012. "Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    17. Olivier Ledoit & Michael Wolf, 2014. "Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks," ECON - Working Papers 137, Department of Economics - University of Zurich, revised Feb 2017.
    18. Ortiz, Roberto & Contreras, Mauricio & Mellado, Cristhian, 2023. "Regression, multicollinearity and Markowitz," Finance Research Letters, Elsevier, vol. 58(PC).
    19. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    20. Shi, Fangquan & Shu, Lianjie & He, Fangyi & Huang, Wenpo, 2025. "Improving minimum-variance portfolio through shrinkage of large covariance matrices," Economic Modelling, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01694-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.