IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i1d10.1007_s00362-024-01628-z.html
   My bibliography  Save this article

Bayesian prior robustness using general $$\phi $$ ϕ -divergence measure

Author

Listed:
  • Lyasmine Harrouche

    (Mouloud Mammeri University)

  • Hocine Fellag

    (Mouloud Mammeri University)

  • Lynda Atil

    (Mouloud Mammeri University)

Abstract

Bayesian robustness measure of classes of contaminated priors using general $$\phi $$ ϕ -divergence between two posterior distributions is introduced. Using the local curvature for the $$\phi $$ ϕ -divergence of the posterior distributions, we propose to extend the result of Dey and Birmiwal (1994), which consider the $$\epsilon $$ ϵ -contaminated and geometric mixing classes, to any prior contamination classes. Then, a new general explicit analytic formula for the local curvature is obtained. Moreover, we show that this curvature formula doesn’t depend on the contaminated posterior distribution and gives unified answers irrespective of the choice of the $$\phi $$ ϕ functions. As applications, both parametric and nonparametric prior contamination are considered.

Suggested Citation

  • Lyasmine Harrouche & Hocine Fellag & Lynda Atil, 2025. "Bayesian prior robustness using general $$\phi $$ ϕ -divergence measure," Statistical Papers, Springer, vol. 66(1), pages 1-19, February.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01628-z
    DOI: 10.1007/s00362-024-01628-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01628-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01628-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    2. Na Young Yoo & Ji Hwan Cha, 2024. "General classes of bivariate distributions for modeling data with common observations," Statistical Papers, Springer, vol. 65(8), pages 5219-5238, October.
    3. Dey, Dipak K. & Birmiwal, Lea R., 1994. "Robust Bayesian analysis using divergence measures," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 287-294, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Emilio Spini, 2021. "Robustness, Heterogeneous Treatment Effects and Covariate Shifts," Papers 2112.09259, arXiv.org, revised Aug 2024.
    2. Basu, Sanjib, 2000. "Uniform stability of posteriors," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 53-58, January.
    3. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    4. Haiyan Zheng & Thomas Jaki & James M.S. Wason, 2023. "Bayesian sample size determination using commensurate priors to leverage preexperimental data," Biometrics, The International Biometric Society, vol. 79(2), pages 669-683, June.
    5. Ho, Paul, 2024. "Estimating the effects of demographics on interest rates: A robust Bayesian perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    6. Abhik Ghosh & Ayanendranath Basu, 2016. "Robust Bayes estimation using the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 413-437, April.
    7. Raffaella Giacomini & Toru Kitagawa & Harald Uhlig, 2019. "Estimation Under Ambiguity," CeMMAP working papers CWP24/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Luai Al-Labadi & Forough Fazeli Asl & Ce Wang, 2021. "Measuring Bayesian Robustness Using Rényi Divergence," Stats, MDPI, vol. 4(2), pages 1-18, March.
    9. Goh, Gyuhyeong & Dey, Dipak K., 2014. "Bayesian model diagnostics using functional Bregman divergence," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 371-383.
    10. Giles Hooker & Anand Vidyashankar, 2014. "Bayesian model robustness via disparities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 556-584, September.
    11. Adriano Suzuki & Vicente Cancho & Francisco Louzada, 2016. "The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics," Statistical Papers, Springer, vol. 57(1), pages 133-159, March.
    12. Gyuhyeong Goh & Jae Kwang Kim, 2021. "Accounting for model uncertainty in multiple imputation under complex sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 930-949, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01628-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.