Locating $$\gamma$$ γ -ray sources on the celestial sphere via modal clustering
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-023-00726-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abramson, Ian S., 1982. "Arbitrariness of the pilot estimator in adaptive kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 562-567, December.
- Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
- Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
- Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
- Alessandro Casa & Giovanna Menardi, 2022. "Nonparametric semi-supervised classification with application to signal detection in high energy physics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 531-550, September.
- Bai, Z. D. & Rao, C. Radhakrishna & Zhao, L. C., 1988. "Kernel estimators of density function of directional data," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 24-39, October.
- Giovanna Menardi, 2016. "A Review on Modal Clustering," International Statistical Review, International Statistical Institute, vol. 84(3), pages 413-433, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stanislav Nagy & Houyem Demni & Davide Buttarazzi & Giovanni C. Porzio, 2024. "Theory of angular depth for classification of directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 627-662, September.
- Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
- Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
- Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
- Jose Ameijeiras-Alonso & Jochen Einbeck, 2024. "A fresh look at mean-shift based modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1067-1095, December.
- Alessandro Casa & Giovanna Menardi, 2022. "Nonparametric semi-supervised classification with application to signal detection in high energy physics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 531-550, September.
- Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012.
"Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
- Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
- Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
- Stanislav Zámečník & Ivana Horová & Stanislav Katina & Kamila Hasilová, 2024. "An adaptive method for bandwidth selection in circular kernel density estimation," Computational Statistics, Springer, vol. 39(4), pages 1709-1728, June.
- Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Local binary regression with spherical predictors," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 30-36.
- Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
- García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
- Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017.
"Tests for qualitative features in the random coefficients model,"
Courant Research Centre: Poverty, Equity and Growth - Discussion Papers
225, Courant Research Centre PEG.
- Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017. "Tests for qualitative features in the random coefficients model," Papers 1704.01066, arXiv.org, revised Mar 2018.
- Teng Qiu & Yongjie Li, 2022. "Nearest Descent, In-Tree, and Clustering," Mathematics, MDPI, vol. 10(5), pages 1-37, February.
- José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
- Giuseppe Pandolfo & Antonio D’ambrosio, 2023. "Clustering directional data through depth functions," Computational Statistics, Springer, vol. 38(3), pages 1487-1506, September.
- Graciela Boente & Daniela Rodriguez & Wenceslao González Manteiga, 2014. "Goodness-of-fit Test for Directional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 259-275, March.
- Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
- Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
More about this item
Keywords
Directional data; Kernel density estimator; Man-shift algorithm; Tree-based classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00726-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.