IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v15y1998i3p383-411.html
   My bibliography  Save this article

Nucleoli as maximizers of collective satisfaction functions

Author

Listed:
  • Bezalel Peleg

    () (Center for Rationality and Interactive Decision Theory, The Hebrew University of Jerusalem, Feldman Building, Givat-Ram, 91904 Jerusalem, Israel)

  • Peter SudhÃlter

    () (Institute of Mathematical Economics, University of Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany)

Abstract

Two preimputations of a given TU game can be compared via the Lorenz order applied to the vectors of satisfactions. One preimputation is `socially more desirable' than the other, if its corresponding vector of satisfactions Lorenz dominates the satisfaction vector with respect to the second preimputation. It is shown that the prenucleolus, the anti-prenucleolus, and the modified nucleolus are maximal in this Lorenz order. Here the modified nucleolus is the unique preimputation which lexicographically minimizes the envies between the coalitions, i.e. the differences of excesses. Recently SudhÃlter developed this solution concept. Properties of the set of all undominated preimputations, the maximal satisfaction solution, are discussed. A function on the set of preimputations is called collective satisfaction function if it respects the Lorenz order. We prove that both classical nucleoli are unique minimizers of certain `weighted Gini inequality indices', which are derived from some collective satisfaction functions. For the (pre)nucleolus the function proposed by Kohlberg, who characterized the nucleolus as a solution of a single minimization problem, can be chosen. Finally, a collective satisfaction function is defined such that the modified nucleolus is its unique maximizer.

Suggested Citation

  • Bezalel Peleg & Peter SudhÃlter, 1998. "Nucleoli as maximizers of collective satisfaction functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(3), pages 383-411.
  • Handle: RePEc:spr:sochwe:v:15:y:1998:i:3:p:383-411 Note: Received: 18 October 1996 / Accepted: 31 January 1997
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00355/papers/8015003/80150383.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    File URL: http://link.springer.de/link/service/journals/00355/papers/8015003/80150383.ps.gz
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lin Zhou & Stephen Ching, 2002. "Multi-valued strategy-proof social choice rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 569-580.
    2. Sen, Amartya & Pattanaik, Prasanta K., 1969. "Necessary and sufficient conditions for rational choice under majority decision," Journal of Economic Theory, Elsevier, vol. 1(2), pages 178-202, August.
    3. Sprumont, Yves, 1991. "The Division Problem with Single-Peaked Preferences: A Characterization of the Uniform Allocation Rule," Econometrica, Econometric Society, vol. 59(2), pages 509-519, March.
    4. Barbera, Salvador & Dutta, Bhaskar & Sen, Arunava, 2005. "Corrigendum to "Strategy-proof social choice correspondences" [J. Econ. Theory 101 (2001) 374-394]," Journal of Economic Theory, Elsevier, vol. 120(2), pages 275-275, February.
    5. Steven Brams & Peter Fishburn, 2005. "Going from theory to practice: the mixed success of approval voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(2), pages 457-474, December.
    6. Sen, Amartya K, 1977. "Social Choice Theory: A Re-examination," Econometrica, Econometric Society, vol. 45(1), pages 53-89, January.
    7. Blair, Douglas & Muller, Eitan, 1983. "Essential aggregation procedures on restricted domains of preferences," Journal of Economic Theory, Elsevier, vol. 30(1), pages 34-53, June.
    8. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    9. Marc Vorsatz, 2008. "Scoring rules on dichotomous preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(1), pages 151-162, June.
    10. repec:cup:apsrev:v:72:y:1978:i:03:p:831-847_15 is not listed on IDEAS
    11. John Duggan & Thomas Schwartz, 2000. "Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(1), pages 85-93.
    12. Groves, Theodore & Loeb, Martin, 1975. "Incentives and public inputs," Journal of Public Economics, Elsevier, pages 211-226.
    13. H. Moulin, 1980. "On strategy-proofness and single peakedness," Public Choice, Springer, vol. 35(4), pages 437-455, January.
    14. Groves, Theodore & Loeb, Martin, 1975. "Incentives and public inputs," Journal of Public Economics, Elsevier, pages 211-226.
    15. Fishburn, Peter C., 1978. "Axioms for approval voting: Direct proof," Journal of Economic Theory, Elsevier, vol. 19(1), pages 180-185, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guni Orshan & Peter Sudhölter, 2010. "The positive core of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 113-136, March.
    2. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 2003-02, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    3. Palestini, Arsen & Pignataro, Giuseppe, 2016. "A graph-based approach to inequality assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 65-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:15:y:1998:i:3:p:383-411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.