IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00251-2.html
   My bibliography  Save this article

Comparing Optimization Methods for Radiation Therapy Patient Scheduling using Different Objectives

Author

Listed:
  • Sara Frimodig

    (KTH Royal Institute of Technology
    RaySearch Laboratories)

  • Per Enqvist

    (KTH Royal Institute of Technology)

  • Mats Carlsson

    (RISE Research Institutes of Sweden)

  • Carole Mercier

    (Iridium Netwerk)

Abstract

Radiation therapy (RT) is a medical treatment to kill cancer cells or shrink tumors. To manually schedule patients for RT is a time-consuming and challenging task. By the use of optimization, patient schedules for RT can be created automatically. This paper presents a study of different optimization methods for modeling and solving the RT patient scheduling problem, which can be used as decision support when implementing an automatic scheduling algorithm in practice. We introduce an Integer Programming (IP) model, a column generation IP model (CG-IP), and a Constraint Programming model. Patients are scheduled on multiple machine types considering their priority for treatment, session duration and allowed machines. Expected future arrivals of urgent patients are included in the models as placeholder patients. Since different cancer centers can have different scheduling objectives, the models are compared using multiple objective functions, including minimizing waiting times, and maximizing the fulfillment of patients’ preferences for treatment times. The test data is generated from historical data from Iridium Netwerk, Belgium’s largest cancer center with 10 linear accelerators. The results demonstrate that the CG-IP model can solve all the different problem instances to a mean optimality gap of less than $$1\%$$ 1 % within one hour. The proposed methodology provides a tool for automated scheduling of RT treatments and can be generally applied to RT centers.

Suggested Citation

  • Sara Frimodig & Per Enqvist & Mats Carlsson & Carole Mercier, 2023. "Comparing Optimization Methods for Radiation Therapy Patient Scheduling using Different Objectives," SN Operations Research Forum, Springer, vol. 4(4), pages 1-38, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00251-2
    DOI: 10.1007/s43069-023-00251-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00251-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00251-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno Vieira & Derya Demirtas & Jeroen B. Kamer & Erwin W. Hans & Louis-Martin Rousseau & Nadia Lahrichi & Wim H. Harten, 2020. "Radiotherapy treatment scheduling considering time window preferences," Health Care Management Science, Springer, vol. 23(4), pages 520-534, December.
    2. Bruno Vieira & Derya Demirtas & Jeroen B van de Kamer & Erwin W Hans & Willem Jongste & Wim van Harten, 2021. "Radiotherapy treatment scheduling: Implementing operations research into clinical practice," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-13, February.
    3. Range, Troels Martin & Lusby, Richard Martin & Larsen, Jesper, 2014. "A column generation approach for solving the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 252-264.
    4. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    5. Shao, Kaining & Fan, Wenjuan & Lan, Shaowen & Kong, Min & Yang, Shanlin, 2023. "A column generation-based heuristic for brachytherapy patient scheduling with multiple treatment sessions considering radioactive source decay and time constraints," Omega, Elsevier, vol. 118(C).
    6. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    7. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.
    8. Conforti, D. & Guerriero, F. & Guido, R., 2010. "Non-block scheduling with priority for radiotherapy treatments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 289-296, February.
    9. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    10. Seyed Hossein Hashemi Doulabi & Louis-Martin Rousseau & Gilles Pesant, 2016. "A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 432-448, August.
    11. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    12. Antoine Legrain & Marie-Andrée Fortin & Nadia Lahrichi & Louis-Martin Rousseau, 2015. "Online stochastic optimization of radiotherapy patient scheduling," Health Care Management Science, Springer, vol. 18(2), pages 110-123, June.
    13. Siqiao Li & Ger Koole & Xiaolan Xie, 2020. "An adaptive priority policy for radiotherapy scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 154-180, March.
    14. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    15. Bard, Jonathan F. & Purnomo, Hadi W., 2005. "Preference scheduling for nurses using column generation," European Journal of Operational Research, Elsevier, vol. 164(2), pages 510-534, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    2. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.
    3. Majed Hadid & Adel Elomri & Tarek Mekkawy & Laoucine Kerbache & Abdelfatteh Omri & Halima Omri & Ruba Y. Taha & Anas Ahmad Hamad & Mohammed Hamad J. Thani, 2022. "Bibliometric analysis of cancer care operations management: current status, developments, and future directions," Health Care Management Science, Springer, vol. 25(1), pages 166-185, March.
    4. Tu San Pham & Antoine Legrain & Patrick De Causmaecker & Louis-Martin Rousseau, 2023. "A Prediction-Based Approach for Online Dynamic Appointment Scheduling: A Case Study in Radiotherapy Treatment," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 844-868, July.
    5. Shao, Kaining & Fan, Wenjuan & Lan, Shaowen & Kong, Min & Yang, Shanlin, 2023. "A column generation-based heuristic for brachytherapy patient scheduling with multiple treatment sessions considering radioactive source decay and time constraints," Omega, Elsevier, vol. 118(C).
    6. Bruno Vieira & Derya Demirtas & Jeroen B. Kamer & Erwin W. Hans & Louis-Martin Rousseau & Nadia Lahrichi & Wim H. Harten, 2020. "Radiotherapy treatment scheduling considering time window preferences," Health Care Management Science, Springer, vol. 23(4), pages 520-534, December.
    7. Petra Vogl & Roland Braune & Karl F. Doerner, 2019. "Scheduling recurring radiotherapy appointments in an ion beam facility," Journal of Scheduling, Springer, vol. 22(2), pages 137-154, April.
    8. Vieira, Bruno & Demirtas, Derya & van de Kamer, Jeroen B. & Hans, Erwin W. & van Harten, Wim, 2018. "A mathematical programming model for optimizing the staff allocation in radiotherapy under uncertain demand," European Journal of Operational Research, Elsevier, vol. 270(2), pages 709-722.
    9. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    10. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    11. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    12. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    13. Siqiao Li & Ger Koole & Xiaolan Xie, 2020. "An adaptive priority policy for radiotherapy scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 154-180, March.
    14. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    15. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2019. "Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center," Health Care Management Science, Springer, vol. 22(4), pages 768-782, December.
    16. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    17. Ridvan Gedik & Shengfan Zhang & Chase Rainwater, 2017. "Strategic level proton therapy patient admission planning: a Markov decision process modeling approach," Health Care Management Science, Springer, vol. 20(2), pages 286-302, June.
    18. Farbod Farhadi & Sina Ansari & Francisco Jara-Moroni, 2023. "Optimization models for patient and technician scheduling in hemodialysis centers," Health Care Management Science, Springer, vol. 26(3), pages 558-582, September.
    19. Xiang Ma & Antoine Sauré & Martin L. Puterman & Marianne Taylor & Scott Tyldesley, 2016. "Capacity planning and appointment scheduling for new patient oncology consults," Health Care Management Science, Springer, vol. 19(4), pages 347-361, December.
    20. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00251-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.