IDEAS home Printed from
   My bibliography  Save this article

The role of Chinese–American scientists in China–US scientific collaboration: a study in nanotechnology


  • Xianwen Wang

    () (Dalian University of Technology
    Dalian University of Technology)

  • Shenmeng Xu

    (Dalian University of Technology
    Dalian University of Technology)

  • Di Liu

    (Dalian University of Technology
    Dalian University of Technology)

  • Yongxia Liang

    (National Science Library, Chinese Academy of Sciences)


In this paper, we use bibliometric methods and social network analysis to analyze the pattern of China–US scientific collaboration on individual level in nanotechnology. Results show that Chinese–American scientists have been playing an important role in China–US scientific collaboration. We find that China–US collaboration in nanotechnology mainly occurs between Chinese and Chinese–American scientists. In the co-authorship network, Chinese–American scientists tend to have higher betweenness centrality. Moreover, the series of polices implemented by the Chinese government to recruit oversea experts seems to contribute a lot to China–US scientific collaboration.

Suggested Citation

  • Xianwen Wang & Shenmeng Xu & Di Liu & Yongxia Liang, 2012. "The role of Chinese–American scientists in China–US scientific collaboration: a study in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 737-749, June.
  • Handle: RePEc:spr:scient:v:91:y:2012:i:3:d:10.1007_s11192-012-0693-x
    DOI: 10.1007/s11192-012-0693-x

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. M. Meyer & K. Debackere & W. Glänzel, 2010. "Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 527-539, November.
    2. Wolfgang Glänzel & Cornelius de Lange, 2002. "A distributional approach to multinationality measures of international scientific collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(1), pages 75-89, April.
    3. Melin, Goran, 2000. "Pragmatism and self-organization: Research collaboration on the individual level," Research Policy, Elsevier, vol. 29(1), pages 31-40, January.
    4. Ronald N. Kostoff & Raymond G. Koytcheff & Clifford G. Y. Lau, 2007. "Global nanotechnology research metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 565-601, March.
    5. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    6. Tianwei He, 2009. "International scientific collaboration of China with the G7 countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 571-582, September.
    7. Bozeman, Barry & Corley, Elizabeth, 2004. "Scientists' collaboration strategies: implications for scientific and technical human capital," Research Policy, Elsevier, vol. 33(4), pages 599-616, May.
    8. Li Tang & Philip Shapira, 2011. "China–US scientific collaboration in nanotechnology: patterns and dynamics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Xianwen Wang & Wenli Mao & Chuanli Wang & Lian Peng & Haiyan Hou, 2013. "Chinese elite brain drain to USA: an investigation of 100 United States national universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(1), pages 37-46, October.
    2. Ping Zhou & Xiaozan Lv, 2015. "Academic publishing and collaboration between China and Germany in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1875-1887, December.
    3. Xianwen Wang & Shenmeng Xu & Zhi Wang & Lian Peng & Chuanli Wang, 2013. "International scientific collaboration of China: collaborating countries, institutions and individuals," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 885-894, June.
    4. Stefano Scarazzati & Lili Wang, 2019. "The effect of collaborations on scientific research output: the case of nanoscience in Chinese regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 839-868, November.
    5. Xuefeng Wang & Rongrong Li & Shiming Ren & Donghua Zhu & Meng Huang & Pengjun Qiu, 2014. "Collaboration network and pattern analysis: case study of dye-sensitized solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1745-1762, March.
    6. Qian Ma & Wenlan Li, 2018. "Growing scientific collaboration between Hong Kong and Mainland China since the handover: a 20-year bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1479-1491, December.
    7. Nathasit Gerdsri & Alisa Kongthon & Sudatip Puengrusme, 2017. "Profiling the Research Landscape in Emerging Areas Using Bibliometrics and Text Mining: A Case Study of Biomedical Engineering (BME) in Thailand," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(02), pages 1-15, April.
    8. Pu Han & Jin Shi & Xiaoyan Li & Dongbo Wang & Si Shen & Xinning Su, 2014. "International collaboration in LIS: global trends and networks at the country and institution level," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 53-72, January.
    9. Zewen Hu & Angela Lin & Peter Willett, 2019. "Identification of research communities in cited and uncited publications using a co-authorship network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 1-19, January.
    10. Ping Zhou & Lutz Bornmann, 2015. "An overview of academic publishing and collaboration between China and Germany," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1781-1793, February.
    11. Lili Wang & Xianwen Wang & Niels J. Philipsen, 2017. "Network structure of scientific collaborations between China and the EU member states," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 765-781, November.
    12. Lili Yuan & Yanni Hao & Minglu Li & Chunbing Bao & Jianping Li & Dengsheng Wu, 2018. "Who are the international research collaboration partners for China? A novel data perspective based on NSFC grants," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 401-422, July.
    13. Vivek Kumar Singh & Ashraf Uddin & David Pinto, 2015. "Computer science research: the top 100 institutions in India and in the world," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 529-553, August.
    14. Jiancheng Guan & He Wei, 2015. "A bilateral comparison of research performance at an institutional level," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 147-173, July.
    15. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuefeng Wang & Rongrong Li & Shiming Ren & Donghua Zhu & Meng Huang & Pengjun Qiu, 2014. "Collaboration network and pattern analysis: case study of dye-sensitized solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1745-1762, March.
    2. Andrej Kastrin & Jelena Klisara & Borut Lužar & Janez Povh, 2017. "Analysis of Slovenian research community through bibliographic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 791-813, February.
    3. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    4. Wagner, Caroline S. & Whetsell, Travis A. & Mukherjee, Satyam, 2019. "International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination," Research Policy, Elsevier, vol. 48(5), pages 1260-1270.
    5. Mary Frank Fox & Mary Lynn Realff & Diana Roldan Rueda & Jillian Morn, 2017. "International research collaboration among women engineers: frequency and perceived barriers, by regions," The Journal of Technology Transfer, Springer, vol. 42(6), pages 1292-1306, December.
    6. Ponomariov, Branco L. & Boardman, P. Craig, 2010. "Influencing scientists' collaboration and productivity patterns through new institutions: University research centers and scientific and technical human capital," Research Policy, Elsevier, vol. 39(5), pages 613-624, June.
    7. Barry Bozeman & Daniel Fay & Catherine Slade, 2013. "Research collaboration in universities and academic entrepreneurship: the-state-of-the-art," The Journal of Technology Transfer, Springer, vol. 38(1), pages 1-67, February.
    8. Hui Xuan Tan & Ephrance Abu Ujum & Kwai Fatt Choong & Kuru Ratnavelu, 2015. "Impact analysis of domestic and international research collaborations: a Malaysian case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 885-904, January.
    9. Li, Feng & Miao, Yajun & Yang, Chenchen, 2015. "How do alumni faculty behave in research collaboration? An analysis of Chang Jiang Scholars in China," Research Policy, Elsevier, vol. 44(2), pages 438-450.
    10. Michael Cary & Taylor Rockwell, 2020. "International Collaboration in Open Access Publications: How Income Shapes International Collaboration," Publications, MDPI, Open Access Journal, vol. 8(1), pages 1-24, February.
    11. Bozeman, Barry & Gaughan, Monica, 2011. "How do men and women differ in research collaborations? An analysis of the collaborative motives and strategies of academic researchers," Research Policy, Elsevier, vol. 40(10), pages 1393-1402.
    12. Eric W. Welch & Yamini Jha, 2016. "Network and perceptual determinants of satisfaction among science and engineering faculty in US research universities," The Journal of Technology Transfer, Springer, vol. 41(2), pages 290-328, April.
    13. Jan Youtie & Barry Bozeman, 2014. "Social dynamics of research collaboration: norms, practices, and ethical issues in determining co-authorship rights," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 953-962, November.
    14. Maaike Verbree & Edwin Horlings & Peter Groenewegen & Inge Weijden & Peter Besselaar, 2015. "Organizational factors influencing scholarly performance: a multivariate study of biomedical research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 25-49, January.
    15. Cimenler, Oguz & Reeves, Kingsley A. & Skvoretz, John, 2015. "An evaluation of collaborative research in a college of engineering," Journal of Informetrics, Elsevier, vol. 9(3), pages 577-590.
    16. Muriithi, Petronilla & Horner, David & Pemberton, Lyn & Wao, Hesborn, 2018. "Factors influencing research collaborations in Kenyan universities," Research Policy, Elsevier, vol. 47(1), pages 88-97.
    17. Julia Melkers & Agrita Kiopa, 2010. "The Social Capital of Global Ties in Science: The Added Value of International Collaboration," Review of Policy Research, Policy Studies Organization, vol. 27(4), pages 389-414, July.
    18. Torben Schubert & Radhamany Sooryamoorthy, 2010. "Can the centre–periphery model explain patterns of international scientific collaboration among threshold and industrialised countries? The case of South Africa and Germany," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 181-203, April.
    19. Branco Ponomariov & Craig Boardman, 2016. "What is co-authorship?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1939-1963, December.
    20. Radhamany Sooryamoorthy, 2009. "Collaboration and publication: How collaborative are scientists in South Africa?," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(2), pages 419-439, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:91:y:2012:i:3:d:10.1007_s11192-012-0693-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.