IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v80y2009i1d10.1007_s11192-007-1897-3.html
   My bibliography  Save this article

Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach

Author

Listed:
  • Yoshiyuki Takeda

    (University of Tokyo)

  • Shiho Mae

    (University of Tokyo)

  • Yuya Kajikawa

    (University of Tokyo)

  • Katsumori Matsushima

    (University of Tokyo)

Abstract

Nanotechnology has been intensively investigated by bibliometric methods due to its technological importance and expected impacts on economic activity. However, there is less focus on nanobiotechnology, which is an emerging research domain in nanotechnology. In this paper, we study the current status of the former, with our primary focus being to reveal the structure and research domains in nanobiotechnology. We also examine country and institutional performance in nanobiotechnology. It emerged that nanostructures, drug delivery and biomedical applications, bio-imaging, and carbon nanotubes and biosensors are the major research domains, while the USA is the leading country, and China has also made substantial contribution. Most institutions having a major impact in the area of nanobiotechnology are located in the USA.

Suggested Citation

  • Yoshiyuki Takeda & Shiho Mae & Yuya Kajikawa & Katsumori Matsushima, 2009. "Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 23-38, July.
  • Handle: RePEc:spr:scient:v:80:y:2009:i:1:d:10.1007_s11192-007-1897-3
    DOI: 10.1007/s11192-007-1897-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-1897-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-1897-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dora Marinova & Michael McAleer, 2003. "Environmental Technology Strengths: International Rankings Based on US Patent Data," CIRJE F-Series CIRJE-F-204, CIRJE, Faculty of Economics, University of Tokyo.
    2. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    5. Claudia A. Perry & Ronald E. Rice, 1998. "Scholarly communication in developmental dyslexia: Influence of network structure on change in a hybrid problem area," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(2), pages 151-168, February.
    6. Martin S. Meyer, 2001. "Patent citation analysis in a novel field of technology:An exploration of nano-science and nano-technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 163-183, April.
    7. Martin Meyer, 2006. "Knowledge integrators or weak links? An exploratory comparison of patenting researchers with their non-inventing peers in nano-science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 545-560, September.
    8. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    9. Clara Calero & Renald Buter & Cecilia Cabello Valdés & Ed Noyons, 2006. "How to identify research groups using publication analysis: an example in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 365-376, February.
    10. Michael H. MacRoberts & Barbara R. MacRoberts, 1989. "Problems of citation analysis: A critical review," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(5), pages 342-349, September.
    11. Martin Meyer, 2000. "Patent Citations in a Novel Field of Technology — What Can They Tell about Interactions between Emerging Communities of Science and Technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 48(2), pages 151-178, September.
    12. Swapan Kumar Patra & Saroj Mishra, 2006. "Bibliometric study of bioinformatics literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 477-489, June.
    13. Yasuhiro Yamashita & Yoshiko Okubo, 2006. "Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI)," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 303-324, August.
    14. Zhou, Ping & Leydesdorff, Loet, 2006. "The emergence of China as a leading nation in science," Research Policy, Elsevier, vol. 35(1), pages 83-104, February.
    15. Katherine W. McCain, 1995. "Biotechnology in context: A database‐filtering approach to identifying core and productive non‐core journals supporting multidisciplinary R & D," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 46(4), pages 306-317, May.
    16. Hajime Eto, 2003. "Interdisciplinary information input and output of a nano-technology project," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 5-33, September.
    17. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joao Victor Rojas Luiz & Daniel Jugend & Charbel José Chiappeta Jabbour & Octaviano Rojas Luiz & Fernando Bernardi Souza, 2016. "Ecodesign field of research throughout the world: mapping the territory by using an evolutionary lens," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 241-259, October.
    2. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    3. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    4. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
    5. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    6. Peng Wang & Fang-Wei Zhu & Hao-Yang Song & Jian-Hua Hou & Jin-Lan Zhang, 2018. "Visualizing the Academic Discipline of Knowledge Management," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    7. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    8. Qingjun Zhao & Jiancheng Guan, 2011. "International collaboration of three ‘giants’ with the G7 countries in emerging nanobiopharmaceuticals," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 159-170, April.
    9. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    10. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    11. Chen, Kaihua & Guan, Jiancheng, 2011. "A bibliometric investigation of research performance in emerging nanobiopharmaceuticals," Journal of Informetrics, Elsevier, vol. 5(2), pages 233-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    2. Hajar Sotudeh & Nahid Khoshian, 2014. "Gender differences in science: the case of scientific productivity in Nano Science & Technology during 2005–2007," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 457-472, January.
    3. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    4. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    5. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
    6. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    7. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.
    8. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    9. Jiancheng Guan & Gangbo Wang, 2010. "A comparative study of research performance in nanotechnology for China’s inventor–authors and their non-inventing peers," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 331-343, August.
    10. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    11. Poh Kam Wong & Yuen Ping Ho & Casey K. Chan, 2007. "Internationalization and evolution of application areas of an emerging technology: The case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 715-737, March.
    12. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    13. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    14. Haydar Yalcin & Tugrul Daim, 2021. "Mining research and invention activity for innovation trends: case of blockchain technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3775-3806, May.
    15. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    16. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    17. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    18. Antje Klitkou & Stian Nygaard & Martin Meyer, 2007. "Tracking techno-science networks: A case study of fuel cells and related hydrogen technology R&D in Norway," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 491-518, February.
    19. Tom Magerman & Bart Looy & Xiaoyan Song, 2010. "Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 289-306, February.
    20. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:80:y:2009:i:1:d:10.1007_s11192-007-1897-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.