IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i5d10.1007_s11192-025-05314-1.html
   My bibliography  Save this article

Analysis of the research collaboration organizational characteristics and scientific impact of large-scale research facilities: a case study of Chinese large-scale research facilities

Author

Listed:
  • Xinzhe Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Large-scale research facilities (LSFs) play a crucial role in advancing fundamental scientific research and enhancing national innovation capacity. This study aims to analyze the organizational characteristics of collaboration within these facilities and their scientific impact. By collecting data on papers published between 2010 and 2023 from four typical LSFs of China, collaboration networks were constructed and compared with papers published in the same period not relying on these facilities. The results indicate that the collaboration network density of LSFs is significantly higher than that of ordinary scientific research networks, with a notably higher proportion of supporting members, reflecting a greater reliance on technical support and auxiliary work. There are also differences between different types of LSFs, with a complex non-linear relationship between the proportion of supporting members and research impact in public experimental platforms, and a significant positive linear relationship between this proportion and research impact in specialized research facilities. The effect of team size on scientific impact varies by facility type, with the number of authors having a significant effect on scientific impact in public experimental platforms and the number of institutions having a more significant positive effect on scientific impact in specialized research facilities. Additionally, the uneven distribution of degree centrality and betweenness centrality significantly affects scientific impact, but this effect varies by facility type. These findings highlight the need for differentiated and refined strategies in managing LSFs. Public experimental platforms should enhance support for core nodes and resource allocation, while specialized research facilities should focus on managing and optimizing the configuration of supporting members. This study provides empirical evidence for the management and resource allocation of LSFs, emphasizing the importance of flexible and refined management to fully harness their potential in driving scientific breakthroughs and technological innovation.

Suggested Citation

  • Xinzhe Li & Xiao Lu, 2025. "Analysis of the research collaboration organizational characteristics and scientific impact of large-scale research facilities: a case study of Chinese large-scale research facilities," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(5), pages 2639-2671, May.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:5:d:10.1007_s11192-025-05314-1
    DOI: 10.1007/s11192-025-05314-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-025-05314-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-025-05314-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. repec:plo:pone00:0057546 is not listed on IDEAS
    2. Radhamany Sooryamoorthy, 2017. "Do types of collaboration change citation? A scientometric analysis of social science publications in South Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 379-400, April.
    3. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    4. Richard Heidler & Olof Hallonsten, 2015. "Qualifying the performance evaluation of Big Science beyond productivity, impact and costs," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 295-312, July.
    5. Chompalov, Ivan & Genuth, Joel & Shrum, Wesley, 2002. "The organization of scientific collaborations," Research Policy, Elsevier, vol. 31(5), pages 749-767, July.
    6. Autio, Erkko & Hameri, Ari-Pekka & Vuola, Olli, 2004. "A framework of industrial knowledge spillovers in big-science centers," Research Policy, Elsevier, vol. 33(1), pages 107-126, January.
    7. Jian Zhang & Michael S. Vogeley & Chaomei Chen, 2011. "Scientometrics of big science: a case study of research in the Sloan Digital Sky Survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 1-14, January.
    8. Ali Gazni & Cassidy R. Sugimoto & Fereshteh Didegah, 2012. "Mapping world scientific collaboration: Authors, institutions, and countries," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(2), pages 323-335, February.
    9. Ali Gazni & Cassidy R. Sugimoto & Fereshteh Didegah, 2012. "Mapping world scientific collaboration: Authors, institutions, and countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 323-335, February.
    10. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    11. Fabio S. V. Silva & Peter A. Schulz & Everard C. M. Noyons, 2019. "Co-authorship networks and research impact in large research facilities: benchmarking internal reports and bibliometric databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 93-108, January.
    12. Radhamany Sooryamoorthy, 2009. "Do types of collaboration change citation? Collaboration and citation patterns of South African science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 177-193, October.
    13. Haeussler, Carolin & Sauermann, Henry, 2020. "Division of labor in collaborative knowledge production: The role of team size and interdisciplinarity," Research Policy, Elsevier, vol. 49(6).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Önder, Ali Sina & Schweitzer, Sascha & Yilmazkuday, Hakan, 2021. "Specialization, field distance, and quality in economists’ collaborations," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Ali Sina Önder & Sascha Schweitzer & Hakan Yilmazkuday, 2021. "Field Distance and Quality in Economists’ Collaborations," Working Papers in Economics & Finance 2021-04, University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
    3. Ali Gazni & Vincent Larivière & Fereshteh Didegah, 2016. "The effect of collaborators on institutions’ scientific impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1209-1230, November.
    4. Lipeng Fan & Yuefen Wang & Shengchun Ding & Binbin Qi, 2020. "Productivity trends and citation impact of different institutional collaboration patterns at the research units’ level," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1179-1196, November.
    5. Wagner, Caroline S. & Whetsell, Travis A. & Mukherjee, Satyam, 2019. "International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination," Research Policy, Elsevier, vol. 48(5), pages 1260-1270.
    6. Thelwall, Mike & Sud, Pardeep, 2014. "No citation advantage for monograph-based collaborations?," Journal of Informetrics, Elsevier, vol. 8(1), pages 276-283.
    7. Hongquan Shen & Juan Xie & Jiang Li & Ying Cheng, 2021. "The correlation between scientific collaboration and citation count at the paper level: a meta-analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3443-3470, April.
    8. Kaile Gong & Ying Cheng, 2022. "Patterns and impact of collaboration in China’s social sciences: cross-database comparisons between CSSCI and SSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5947-5964, October.
    9. Radhamany Sooryamoorthy, 2019. "Scientific knowledge in South Africa: information trends, patterns and collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1365-1386, June.
    10. Abramo, Giovanni & D'Angelo, Ciriaco Andrea & Di Costa, Flavia, 2019. "Diversification versus specialization in scientific research: Which strategy pays off?," Technovation, Elsevier, vol. 82, pages 51-57.
    11. Cathelijn J F Waaijer & Benoît Macaluso & Cassidy R Sugimoto & Vincent Larivière, 2016. "Stability and Longevity in the Publication Careers of U.S. Doctorate Recipients," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-15, April.
    12. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    13. Seokbeom Kwon & Jan Youtie & Alan Porter & Nils Newman, 2024. "How does regulatory uncertainty shape the innovation process? Evidence from the case of nanomedicine," The Journal of Technology Transfer, Springer, vol. 49(1), pages 262-302, February.
    14. Rahman, Mohammad Tariqur & Regenstein, Joe Mac & Kassim, Noor Lide Abu & Haque, Nazmul, 2017. "The need to quantify authors’ relative intellectual contributions in a multi-author paper," Journal of Informetrics, Elsevier, vol. 11(1), pages 275-281.
    15. María Bordons & Borja González-Albo & Javier Aparicio & Luz Moreno, 2015. "The influence of R&D intensity of countries on the impact of international collaborative research: evidence from Spain," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1385-1400, February.
    16. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    17. Tang, Kun & Li, Baiyang & Zhu, Qiyu & Ma, Lecun, 2024. "Disruptive content, cross agglomeration interaction, and agglomeration replacement: Does cohesion foster strength?," Journal of Informetrics, Elsevier, vol. 18(4).
    18. Chaocheng He & Jiang Wu & Qingpeng Zhang, 2021. "Characterizing research leadership on geographically weighted collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4005-4037, May.
    19. Barrios, Candelaria & Flores, Esther & Martínez, M. Angeles & Ruiz-Martínez, Marta, 2019. "Is there convergence in international research collaboration? An exploration at the country level in the basic and applied science fields," MPRA Paper 123487, University Library of Munich, Germany.
    20. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:5:d:10.1007_s11192-025-05314-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.