IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i2d10.1007_s11192-023-04811-5.html
   My bibliography  Save this article

A Deep Multi-Tasking Approach Leveraging on Cited-Citing Paper Relationship For Citation Intent Classification

Author

Listed:
  • Tirthankar Ghosal

    (Charles University
    Oak Ridge National Laboratory)

  • Kamal Kaushik Varanasi

    (Indian Institute of Technology Patna)

  • Valia Kordoni

    (Humboldt University Berlin)

Abstract

Citations are crucial artifacts to provide additional information to the reader to comprehend the research under concern. There are different roles that citations play in scientific discourse. Correctly identifying the intent of the citations finds applications ranging from predicting scholarly impact, finding idea propagation, to text summarization. With the rapid growth in scientific literature, the need for automated methods to classify citations is now growing intense. However, we can only fully understand the intent of a citation if we look at the citation context in the citing paper and also the primary purpose of the cited article. In this work, we propose a neural multi-task learning framework that harnesses the structural information of the research papers and the cited paper’s information for the effective classification of citation intents. We analyze the impact of three auxiliary tasks on the performance of our approach for citation classification. Our experiments on three benchmark citation classification datasets show that incorporating cited paper information (title) shows that our deep neural model achieves a new state-of-the-art on the ACL-ARC dataset with an absolute increase of 5.3% in the F1 score over the previous best model. We also achieve comparable performance with respect to the best-performing systems in the SDP 2021 3C Shared task on Citation Context Classification. We make our codes available at https://github.com/Tirthankar-Ghosal/citationclassification-SCIM

Suggested Citation

  • Tirthankar Ghosal & Kamal Kaushik Varanasi & Valia Kordoni, 2024. "A Deep Multi-Tasking Approach Leveraging on Cited-Citing Paper Relationship For Citation Intent Classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(2), pages 767-783, February.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:2:d:10.1007_s11192-023-04811-5
    DOI: 10.1007/s11192-023-04811-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04811-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04811-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang Yi & Xiaolan Ao & Yuh-Shan Ho, 2008. "Use of citation per publication as an indicator to evaluate pentachlorophenol research," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 67-80, April.
    2. Zhi Li & Yuh-Shan Ho, 2008. "Use of citation per publication as an indicator to evaluate contingent valuation research," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 97-110, April.
    3. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    4. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    5. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    6. Steven A. Morris & G. Yen & Zheng Wu & Benyam Asnake, 2003. "Time line visualization of research fronts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 413-422, March.
    7. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    8. S. Phineas Upham & Henry Small, 2010. "Emerging research fronts in science and technology: patterns of new knowledge development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 15-38, April.
    9. Small, Henry & Tseng, Hung & Patek, Mike, 2017. "Discovering discoveries: Identifying biomedical discoveries using citation contexts," Journal of Informetrics, Elsevier, vol. 11(1), pages 46-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Maribel Vega-Arce & Gonzalo Salas & Gastón Núñez-Ulloa & Cristián Pinto-Cortez & Ivelisse Torres Fernandez & Yuh-Shan Ho, 2019. "Research performance and trends in child sexual abuse research: a Science Citation Index Expanded-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1505-1525, December.
    4. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    5. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    6. Hui-Zhen Fu & Yuh-Shan Ho, 2013. "Comparison of independent research of China’s top universities using bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 259-276, July.
    7. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.
    8. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    9. Michael C. Calver & J. Stuart Bradley, 2009. "Should we use the mean citations per paper to summarise a journal’s impact or to rank journals in the same field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 611-615, December.
    10. Jonathan M. Levitt & Mike Thelwall, 2016. "Long term productivity and collaboration in information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1103-1117, September.
    11. Yuh-Shan Ho, 2013. "The top-cited research works in the Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1297-1312, March.
    12. Amber Geurts & Ralph Gutknecht & Philine Warnke & Arjen Goetheer & Elna Schirrmeister & Babette Bakker & Svetlana Meissner, 2022. "New perspectives for data‐supported foresight: The hybrid AI‐expert approach," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    13. R. Fileto Maciel & P. Saskia Bayerl & Marta Macedo Kerr Pinheiro, 2019. "Technical research innovations of the US national security system," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 539-565, August.
    14. Jinshui Sun & Jinren Ni & Yuh-Shan Ho, 2011. "Scientometric analysis of coastal eutrophication research during the period of 1993 to 2008," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 353-366, April.
    15. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    16. Gozuacik, Necip & Sakar, C. Okan & Ozcan, Sercan, 2023. "Technological forecasting based on estimation of word embedding matrix using LSTM networks," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    17. Jonathan M. Levitt & Mike Thelwall, 2010. "Does the higher citation of collaborative research differ from region to region? A case study of Economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 171-183, October.
    18. Xiaoyun Sui & Yongxia Chen & Zhi Lu & Yifeng Chen, 2015. "A bibliometric analysis of research papers related to the Mekong River," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 419-434, October.
    19. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Worasak Klongthong & Veera Muangsin & Chupun Gowanit & Nongnuj Muangsin, 2021. "A Patent Analysis to Identify Emergent Topics and Convergence Fields: A Case Study of Chitosan," Sustainability, MDPI, vol. 13(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:2:d:10.1007_s11192-023-04811-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.