IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i2d10.1007_s11192-021-04240-2.html
   My bibliography  Save this article

Research trend prediction in computer science publications: a deep neural network approach

Author

Listed:
  • Soroush Taheri

    (Shahid Beheshti University)

  • Sadegh Aliakbary

    (Shahid Beheshti University)

Abstract

Thousands of research papers are being published every day, and among all these research works, one of the fastest-growing fields is computer science (CS). Thus, learning which research areas are trending in this particular field of study is advantageous to a significant number of scholars, research institutions, and funding organizations. Many scientometric studies have been done focusing on analyzing the current CS trends and predicting future ones from different perspectives as a consequence. Despite the large datasets from this vast number of CS publications and the power of deep learning methods in such big data problems, deep neural networks have not yet been used to their full potential in this area. Therefore, the objective of this paper is to predict the upcoming years’ CS trends using long short-term memory neural networks. Accordingly, CS papers from 1940 and their corresponding fields of study from the microsoft academic graph dataset have been exploited for solving this research trend prediction problem. The prediction accuracy of the proposed method is then evaluated using RMSE and coefficient of determination (R2) metrics. The evaluations show that the proposed method outperforms the baseline approaches in terms of the prediction accuracy in all considered time periods. Subsequently, adopting the proposed method’s predictions, we investigate future trending areas in computer science research from various viewpoints.

Suggested Citation

  • Soroush Taheri & Sadegh Aliakbary, 2022. "Research trend prediction in computer science publications: a deep neural network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 849-869, February.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04240-2
    DOI: 10.1007/s11192-021-04240-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04240-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04240-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qing Cheng & Xin Lu & Zhong Liu & Jincai Huang, 2015. "Mining research trends with anomaly detection models: the case of social computing research," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 453-469, May.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
    5. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    6. Yuen-Hsien Tseng & Yu-I Lin & Yi-Yang Lee & Wen-Chi Hung & Chun-Hsiang Lee, 2009. "A comparison of methods for detecting hot topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 73-90, October.
    7. Jabłońska-Sabuka, Matylda & Sitarz, Robert & Kraslawski, Andrzej, 2014. "Forecasting research trends using population dynamics model with Burgers’ type interaction," Journal of Informetrics, Elsevier, vol. 8(1), pages 111-122.
    8. Ebadi, Ashkan & Tremblay, Stéphane & Goutte, Cyril & Schiffauerova, Andrea, 2020. "Application of machine learning techniques to assess the trends and alignment of the funded research output," Journal of Informetrics, Elsevier, vol. 14(2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    2. Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
    3. Lijie Feng & Kehui Liu & Jinfeng Wang & Kuo-Yi Lin & Ke Zhang & Luyao Zhang, 2022. "Identifying Promising Technologies of Electric Vehicles from the Perspective of Market and Technical Attributes," Energies, MDPI, vol. 15(20), pages 1-22, October.
    4. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    5. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    6. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    7. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    9. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    10. Antonio Fernández-Cano & Manuel Torralbo & Mónica Vallejo, 2012. "Time series of scientific growth in Spanish doctoral theses (1848–2009)," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 15-36, April.
    11. Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
    12. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    13. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    14. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    16. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2023. "On the Design of Public Debate in Social Networks," Operations Research, INFORMS, vol. 71(2), pages 626-648, March.
    17. Kułakowski, Krzysztof, 2009. "Opinion polarization in the Receipt–Accept–Sample model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 469-476.
    18. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    19. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    20. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04240-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.