IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i5d10.1007_s11192-021-03910-5.html
   My bibliography  Save this article

Sleeping beauties gain impact in overdrive mode

Author

Listed:
  • Anthony F. J. van Raan

    (Leiden University)

Abstract

In this study we focus on characteristics of SBs that have not or hardly been investigated previously. We find that the choice of the awakening period in the selection of SBs has consequences for the measured citation patterns. Focusing on medical SBs we analyze patterns in the time-development of the citation impact of SBs; the influence of self-citations on the awakening process; and the occurrence of medical research fields to which the SBs and their citing papers belong. An important finding is that SBs are generally characterized by a sleep that becomes less and less deep instead of a permanent deep sleep. The sleeping period is followed by a phase-transition-like jump as a start of the awakening period and a remarkable regularity is found for the citation impact immediately before and after the jump.

Suggested Citation

  • Anthony F. J. van Raan, 2021. "Sleeping beauties gain impact in overdrive mode," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4311-4332, May.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03910-5
    DOI: 10.1007/s11192-021-03910-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03910-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03910-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    2. Anthony F. J. Raan & Jos J. Winnink, 2018. "Do younger Sleeping Beauties prefer a technological prince?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 701-717, February.
    3. Tibor Braun & Wolfgang Glänzel & András Schubert, 2010. "On Sleeping Beauties, Princes and other tales of citation distributions …," Research Evaluation, Oxford University Press, vol. 19(3), pages 195-202, September.
    4. Jan Bogaert & Ronald Rousseau & Piet Van Hecke, 2000. "Percolation as a Model for Informetric Distributions: Fragment Size Distribution Characterised by Bradford Curves," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 195-206, February.
    5. Jiang Li & Fred Y. Ye, 2012. "The phenomenon of all-elements-sleeping-beauties in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(3), pages 795-799, September.
    6. Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
    7. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    8. Adil El Aichouchi & Philippe Gorry, 2018. "Delayed recognition of Judah Folkman’s hypothesis on tumor angiogenesis: when a Prince awakens a Sleeping Beauty by self-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 385-399, July.
    9. Beatriz Barros & Ana Fernández-Zubieta & Raul Fidalgo-Merino & Francisco Triguero, 2018. "Scientific knowledge percolation process and social impact: A case study on the biotechnology and microbiology perceptions on Twitter," Science and Public Policy, Oxford University Press, vol. 45(6), pages 804-814.
    10. Anthony F J van Raan & Jos J Winnink, 2019. "The occurrence of ‘Sleeping Beauty’ publications in medical research: Their scientific impact and technological relevance," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-34, October.
    11. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    12. Jian Du & Yishan Wu, 2018. "A parameter-free index for identifying under-cited sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 959-971, August.
    13. Jiang Li & Dongbo Shi, 2016. "Sleeping beauties in genius work: When were they awakened?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 432-440, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    2. Yang, Jinqing & Bu, Yi & Lu, Wei & Huang, Yong & Hu, Jiming & Huang, Shengzhi & Zhang, Li, 2022. "Identifying keyword sleeping beauties: A perspective on the knowledge diffusion process," Journal of Informetrics, Elsevier, vol. 16(1).
    3. Jianhua Hou & Hao Li & Yang Zhang, 2023. "Altmetrics-based sleeping beauties: necessity or just a supplement?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5477-5506, October.
    4. Chi, Yuxue & Tang, Xianyi & Liu, Yijun, 2022. "Exploring the “awakening effect” in knowledge diffusion: a case study of publications in the library and information science domain," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Jianhua Hou & Xiucai Yang & Haoyang Song & Haiyue Yao, 2023. "Will patent family be dormant? Research on the identification and characteristics of sleeping beauty’s patent family," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5361-5387, October.
    6. Helena H. Zhang & Fred Y. Ye, 2020. "Identifying ‘associated-sleeping-beauties’ in ‘swan-groups’ based on small qualified datasets of physics and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1525-1537, March.
    7. Miura, Takahiro & Asatani, Kimitaka & Sakata, Ichiro, 2023. "Revisiting the uniformity and inconsistency of slow-cited papers in science," Journal of Informetrics, Elsevier, vol. 17(1).
    8. Hui Fang, 2019. "A transition stage co-citation criterion for identifying the awakeners of sleeping beauty publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 307-322, October.
    9. Hui Fang, 2018. "Analysing the variation tendencies of the numbers of yearly citations for sleeping beauties in science by using derivative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1051-1070, May.
    10. Jianhua Hou & Hao Li & Yang Zhang, 2020. "Identifying the princes base on Altmetrics: An awakening mechanism of sleeping beauties from the perspective of social media," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-28, November.
    11. Hou, Jianhua & Yang, Xiucai, 2020. "Social media-based sleeping beauties: Defining, identifying and features," Journal of Informetrics, Elsevier, vol. 14(2).
    12. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    13. Zeng, Carl J. & Qi, Eric P. & Li, Simon S. & Stanley, H. Eugene & Ye, Fred Y., 2017. "Statistical characteristics of breakthrough discoveries in science using the metaphor of black and white swans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 40-46.
    14. Aurora A. C. Teixeira & Pedro Cosme Vieira & Ana Patrícia Abreu, 2017. "Sleeping Beauties and their princes in innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 541-580, February.
    15. Yuh-Shan Ho & James Hartley, 2017. "Sleeping beauties in psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 301-305, January.
    16. ZhangJian Zong & XuanZhen Liu & Hui Fang, 2018. "Sleeping beauties with no prince based on the co-citation criterion," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1841-1852, December.
    17. Ratnadeep Dey & Anurag Roy & Tanmoy Chakraborty & Saptarshi Ghosh, 2017. "Sleeping beauties in Computer Science: characterization and early identification," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1645-1663, December.
    18. You Song & Fangling Situ & Hongjun Zhu & Jinzhi Lei, 2018. "To be the Prince to wake up Sleeping Beauty: the rediscovery of the delayed recognition studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 9-24, October.
    19. Du, Jian & Li, Peixin & Haunschild, Robin & Sun, Yinan & Tang, Xiaoli, 2020. "Paper-patent citation linkages as early signs for predicting delayed recognized knowledge: Macro and micro evidence," Journal of Informetrics, Elsevier, vol. 14(2).
    20. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03910-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.