IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v87y2025i1d10.1007_s13571-024-00346-8.html
   My bibliography  Save this article

Semiparametric Model-Assisted Approach to Probabilistic Sampling of Finite Populations With High Right-Skew and Kurtosis

Author

Listed:
  • Carlos A. Cardozo

    (Pontificia Universidad Javeriana)

  • Carlos E. Alonso-Malaver

    (Universidad Nacional de Colombia)

Abstract

We offer a new semiparametric model-assisted estimator for the total population parameter of an asymmetric finite population. In some practical situations, such as estimating totals of high rigth-skew finite populations or when the auxiliary variables and the interest variable have an unknown nonlinear association, the more traditional assisted estimators, REG and GEREG, may not obtain acceptable results. We propose a novel class of semiparametric model-assisted estimators to solve the mention drawbacks of the REG and GEREG estimators. We suppose a generalized Gamma superpopulation model that generate the finite population and propose a semiparametric model-assisted regression estimator (SREG). Under mild conditions, we study the asymptotic properties of the first-order approximation of the SREG estimator. We show that simple random sampling without replacement (SI), simple random sampling with replacement (SRSWR) using unequal probabilities of selection, Poisson sampling (PO), and stratified sampling with SI (STSI) hold the conditions for a desirable asymptotic behaviour. Nonetheless, simple random sampling with replacement (SRSWR) using equal probabilities of selection and systematic sampling (SY) do not hold the conditions. Additionally, through several Monte Carlo simulations, we assess the performance of SREG estimators and compare it with some natural competitors, HT, REG and Model-Calibration estimators, showing a better behaviour of SREG. Finally, one application is presented in which the SREG estimator shows a satisfactory performance, in contrast of the HT, REG and Model-Calibration estimators.

Suggested Citation

  • Carlos A. Cardozo & Carlos E. Alonso-Malaver, 2025. "Semiparametric Model-Assisted Approach to Probabilistic Sampling of Finite Populations With High Right-Skew and Kurtosis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 87(1), pages 29-58, May.
  • Handle: RePEc:spr:sankhb:v:87:y:2025:i:1:d:10.1007_s13571-024-00346-8
    DOI: 10.1007/s13571-024-00346-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-024-00346-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-024-00346-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li Wang, 2009. "Single-index model-assisted estimation in survey sampling," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(4), pages 487-504.
    2. Antal, Erika & Tillé, Yves, 2011. "A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 534-543.
    3. Carlos A. Cardozo & Gilberto A. Paula & Luiz H. Vanegas, 2022. "Generalized log-gamma additive partial linear models with P-spline smoothing," Statistical Papers, Springer, vol. 63(6), pages 1953-1978, December.
    4. Fabio, Lizandra C. & Paula, Gilberto A. & Castro, Mário de, 2012. "A Poisson mixed model with nonnormal random effect distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1499-1510.
    5. Wang, Li & Wang, Suojin, 2011. "Nonparametric additive model-assisted estimation for survey data," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1126-1140, August.
    6. Agostinelli, Claudio & Marazzi, Alfio & Yohai, Víctor J. & Randriamiharisoa, Alex, 2016. "Robust Estimation of the Generalized Loggamma Model: The R Package robustloggamma," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i07).
    7. Rondon, Luz Marina & Vanegas, Luis Hernando & Ferraz, Cristiano, 2012. "Finite population estimation under generalized linear model assistance," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 680-697.
    8. Ortega, Edwin M. M. & Bolfarine, Heleno & Paula, Gilberto A., 2003. "Influence diagnostics in generalized log-gamma regression models," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 165-186, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Cardozo & Gilberto A. Paula & Luiz H. Vanegas, 2022. "Generalized log-gamma additive partial linear models with P-spline smoothing," Statistical Papers, Springer, vol. 63(6), pages 1953-1978, December.
    2. Agostinelli, Claudio & Locatelli, Isabella & Marazzi, Alfio & Yohai, Víctor J., 2017. "Robust estimators of accelerated failure time regression with generalized log-gamma errors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 92-106.
    3. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    4. Lan Xue & Jing Wang, 2010. "Distribution function estimation by constrained polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 443-457.
    5. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    6. Roger Tovar-Falón & Guillermo Martínez-Flórez & Heleno Bolfarine, 2022. "Modelling Asymmetric Data by Using the Log-Gamma-Normal Regression Model," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    7. Luca Sartore & Kelly Toppin & Linda Young & Clifford Spiegelman, 2019. "Developing Integer Calibration Weights for Census of Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 26-48, March.
    8. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    9. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    10. Wayne A. Fuller & Jason C. Legg & Yang Li, 2017. "Bootstrap Variance Estimation for Rejective Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1562-1570, October.
    11. Guillermo Martínez-Flórez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Flexible Log-Linear Birnbaum–Saunders Model," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    12. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    13. Lizandra C. Fabio & Francisco J. A. Cysneiros & Gilberto A. Paula & Jalmar M. F. Carrasco, 2022. "Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes," Computational Statistics, Springer, vol. 37(3), pages 1435-1459, July.
    14. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    15. Shu Wei Chou-Chen & Rodrigo A. Oliveira & Irina Raicher & Gilberto A. Paula, 2024. "Additive partial linear models with autoregressive symmetric errors and its application to the hospitalizations for respiratory diseases," Statistical Papers, Springer, vol. 65(8), pages 5145-5166, October.
    16. Sayed A. Mostafa & Ibrahim A. Ahmad, 2021. "Kernel Density Estimation Based on the Distinct Units in Sampling with Replacement," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 507-547, November.
    17. Zhao, Puying & Haziza, David & Wu, Changbao, 2020. "Survey weighted estimating equation inference with nuisance functionals," Journal of Econometrics, Elsevier, vol. 216(2), pages 516-536.
    18. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    19. Carlos A. Dos Santos & Daniele C. T. Granzotto & Vera L. D. Tomazella & Francisco Louzada, 2018. "Hierarchical Transmuted Log-Logistic Model: A Subjective Bayesian Analysis," JRFM, MDPI, vol. 11(1), pages 1-12, March.
    20. Edwin Ortega & Fernanda Rizzato & Clarice Demétrio, 2009. "The generalized log-gamma mixture model with covariates: local influence and residual analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(3), pages 305-331, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:87:y:2025:i:1:d:10.1007_s13571-024-00346-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.