IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v106i494y2011p534-543.html
   My bibliography  Save this article

A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population

Author

Listed:
  • Antal, Erika
  • Tillé, Yves

Abstract

No abstract is available for this item.

Suggested Citation

  • Antal, Erika & Tillé, Yves, 2011. "A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 534-543.
  • Handle: RePEc:bes:jnlasa:v:106:i:494:y:2011:p:534-543
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm09767
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Guandalini, 2022. "Things you should know about the Gini index," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(4), pages 4-12, October-D.
    2. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
    3. Luca Sartore & Kelly Toppin & Linda Young & Clifford Spiegelman, 2019. "Developing Integer Calibration Weights for Census of Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 26-48, March.
    4. Żądło Tomasz, 2021. "On the generalisation of Quatember’s bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    5. Michal Brzezinski, 2011. "Variance Estimation for Richness Measures," LWS Working papers 11, LIS Cross-National Data Center in Luxembourg.
    6. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    7. Pier Luigi Conti & Fulvia Mecatti, 2022. "Resampling under Complex Sampling Designs: Roots, Development and the Way Forward," Stats, MDPI, vol. 5(1), pages 1-12, March.
    8. María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    9. Sayed A. Mostafa & Ibrahim A. Ahmad, 2021. "Kernel Density Estimation Based on the Distinct Units in Sampling with Replacement," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 507-547, November.
    10. J. A. Mayor-Gallego & J. L. Moreno-Rebollo & M. D. Jiménez-Gamero, 2019. "Estimation of the finite population distribution function using a global penalized calibration method," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 1-35, March.
    11. Conti, Pier Luigi & Mecatti, Fulvia & Nicolussi, Federica, 2022. "Efficient unequal probability resampling from finite populations," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    12. Y. G. Berger & O. De La Riva Torres, 2016. "Empirical likelihood confidence intervals for complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 319-341, March.
    13. Zhao, Puying & Haziza, David & Wu, Changbao, 2020. "Survey weighted estimating equation inference with nuisance functionals," Journal of Econometrics, Elsevier, vol. 216(2), pages 516-536.
    14. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    15. Michal Brzezinski, 2014. "Statistical inference for richness measures," Applied Economics, Taylor & Francis Journals, vol. 46(14), pages 1599-1608, May.
    16. Zhonglei Wang & Liuhua Peng & Jae Kwang Kim, 2022. "Bootstrap inference for the finite population mean under complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1150-1174, September.
    17. Wayne A. Fuller & Jason C. Legg & Yang Li, 2017. "Bootstrap Variance Estimation for Rejective Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1562-1570, October.
    18. Sixia Chen & David Haziza & Zeinab Mashreghi, 2022. "A Comparison of Existing Bootstrap Algorithms for Multi-Stage Sampling Designs," Stats, MDPI, vol. 5(2), pages 1-17, June.
    19. Tomasz Żądło, 2021. "On the generalisation of Quatember's bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    20. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    21. Marius Stefan & Michael A. Hidiroglou, 2023. "A Bootstrap Variance Procedure for the Generalised Regression Estimator," International Statistical Review, International Statistical Institute, vol. 91(2), pages 294-317, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:106:i:494:y:2011:p:534-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.