IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v86y2024i2d10.1007_s13571-024-00332-0.html
   My bibliography  Save this article

Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data

Author

Listed:
  • Prakash Chandra

    (Indian Institute of Technology Patna
    Bihar Mausam Sewa Kendra, Sardar Patel Bhawan)

  • Arvind Kumar Alok

    (Indian Institute of Technology (Indian School of Mines))

  • Yogesh Mani Tripathi

    (Indian Institute of Technology Patna)

  • Liang Wang

    (School of Mathematics, Yunnan Normal University)

Abstract

We make inference for a competing risks model under the assumption that observations are left-truncated and right-censored and failure causes are partially observed. When the latent failure times follow a generalized family of distributions, inference for unknown parameters is provided using classical and Bayesian approaches. Particularly existence-uniqueness properties of maximum likelihood estimators are established. Subsequently interval estimators are constructed based on observed Fisher information matrix. Bayes estimates and associated highest posterior density intervals are developed using gamma-beta prior distributions by considering squared error loss function. We also study estimation problem when parameters are order restricted. The performance of all estimators is evaluated based on an extensive simulation study and comments are obtained. A real data set is also analyzed for illustration purposes.

Suggested Citation

  • Prakash Chandra & Arvind Kumar Alok & Yogesh Mani Tripathi & Liang Wang, 2024. "Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 809-844, November.
  • Handle: RePEc:spr:sankhb:v:86:y:2024:i:2:d:10.1007_s13571-024-00332-0
    DOI: 10.1007/s13571-024-00332-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-024-00332-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-024-00332-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    3. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    4. Shuvashree Mondal & Debasis Kundu, 2019. "Point and Interval Estimation of Weibull Parameters Based on Joint Progressively Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-25, June.
    5. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    6. Peng, Mengjiao & Xiang, Liming & Wang, Shanshan, 2018. "Semiparametric regression analysis of clustered survival data with semi-competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 53-70.
    7. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    8. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    2. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    3. Xifan Song & Ziyu Xiong & Wenhao Gui, 2022. "Parameter Estimation of Exponentiated Half-Logistic Distribution for Left-Truncated and Right-Censored Data," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    4. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    5. Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
    6. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    10. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Hirofumi Michimae & Takeshi Emura, 2023. "Bayesian ridge regression for survival data based on a vine copula-based prior," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(4), pages 755-784, December.
    12. Yandan Yang & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2019. "Expectation–maximization algorithm for system-based lifetime data with unknown system structure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 69-98, March.
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    14. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Escobar-Bach, Mikael & Helali, Salima, 2024. "Dependent censoring with simultaneous death times based on the Generalized Marshall–Olkin model," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    16. Kosuke Nakazono & Yu-Cheng Lin & Gen-Yih Liao & Ryuji Uozumi & Takeshi Emura, 2024. "Computation of the Mann–Whitney Effect under Parametric Survival Copula Models," Mathematics, MDPI, vol. 12(10), pages 1-22, May.
    17. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    18. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    19. Ren Teranishi & Kyoji Furukawa & Takeshi Emura, 2025. "A Two-Stage Estimation Approach to Cox Regression Under the Five-Parameter Spline Model," Mathematics, MDPI, vol. 13(4), pages 1-29, February.
    20. Lo, Simon M.S. & Wilke, Ralf A. & Emura, Takeshi, 2024. "A semiparametric model for the cause-specific hazard under risk proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:86:y:2024:i:2:d:10.1007_s13571-024-00332-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.