IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i2d10.1007_s13571-021-00272-z.html
   My bibliography  Save this article

Stationary GE-Process and its Application in Analyzing Gold Price Data

Author

Listed:
  • Debasis Kundu

    (Indian Institute of Technology Kanpur)

Abstract

In this paper we introduce a new discrete time and continuous state space stationary process {Xn;n = 1,2,…}, such that Xn follows a two-parameter generalized exponential (GE) distribution. Joint distribution functions, characterization and some dependency properties of this new process have been investigated. The GE-process has three unknown parameters, two shape parameters and one scale parameter, and due to this reason it is more flexible than the existing exponential process. In presence of the scale parameter, if the two shape parameters are equal, then the maximum likelihood estimators of the unknown parameters can be obtained by solving one non-linear equation and if the two shape parameters are arbitrary, then the maximum likelihood estimators can be obtained by solving a two dimensional optimization problem. Two synthetic data sets, and one real gold-price data set have been analyzed to see the performance of the proposed model in practice. Finally some generalizations have been indicated.

Suggested Citation

  • Debasis Kundu, 2022. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 575-595, November.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00272-z
    DOI: 10.1007/s13571-021-00272-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00272-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00272-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Arnold, Barry C. & Hallett, J. Terry, 1989. "A characterization of the pareto process among stationary stochastic processes of the form Xn = c min(Xn-1, Yn)," Statistics & Probability Letters, Elsevier, vol. 8(4), pages 377-380, September.
    2. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    3. Saralees Nadarajah, 2011. "The exponentiated exponential distribution: a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 219-251, September.
    4. K. Jose & Miroslav Ristić & Ancy Joseph, 2011. "Marshall–Olkin bivariate Weibull distributions and processes," Statistical Papers, Springer, vol. 52(4), pages 789-798, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debasis Kundu, 2021. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Papers 2201.02568, arXiv.org.
    2. Diksha Das & Tariq S. Alshammari & Khudhayr A. Rashedi & Bhanita Das & Partha Jyoti Hazarika & Mohamed S. Eliwa, 2024. "Discrete Joint Random Variables in Fréchet-Weibull Distribution: A Comprehensive Mathematical Framework with Simulations, Goodness-of-Fit Analysis, and Informed Decision-Making," Mathematics, MDPI, vol. 12(21), pages 1-28, October.
    3. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    4. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2020. "On the Analysis of New COVID-19 Cases in Pakistan Using an Exponentiated Version of the M Family of Distributions," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    5. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    6. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    7. Roberto Casarin & Bertrand B. Maillet & Anthony Osuntuyi, 2024. "Monte carlo within simulated annealing for integral constrained optimizations," Annals of Operations Research, Springer, vol. 334(1), pages 205-240, March.
    8. Sofian T. Obeidat & Diksha Das & Mohamed S. Eliwa & Bhanita Das & Partha Jyoti Hazarika & Wael W. Mohammed, 2025. "Two-Dimensional Probability Models for the Weighted Discretized Fréchet–Weibull Random Variable with Min–Max Operators: Mathematical Theory and Statistical Goodness-of-Fit Analysis," Mathematics, MDPI, vol. 13(4), pages 1-29, February.
    9. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    10. Debashis Samanta & Debasis Kundu & Ayon Ganguly, 2018. "Order Restricted Bayesian Analysis of a Simple Step Stress Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 195-221, November.
    11. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    12. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
    13. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    14. Denys Pommeret, 2013. "A two-sample test when data are contaminated," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 501-516, November.
    15. Yoo, Na Young & Lee, Hyunju & Cha, Ji Hwan, 2025. "Development of a new general class of bivariate distributions based on reversed hazard rate order," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    16. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    17. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    18. Gauss Cordeiro & Elizabeth Hashimoto & Edwin Ortega & Marcelino Pascoa, 2012. "The McDonald extended distribution: properties and applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 409-433, July.
    19. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    20. Debashis Samanta & Debasis Kundu, 2023. "Bivariate Semi-Parametric Model: Bayesian Inference," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-23, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00272-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.