IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i1d10.1007_s13571-021-00263-0.html
   My bibliography  Save this article

Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution

Author

Listed:
  • Raj Kamal Maurya

    (Sardar Vallabhbhai National Institute of Technology)

  • Yogesh Mani Tripathi

    (Indian Institute of Technology Patna)

  • Tanmay Kayal

    (neurIOT Technologies LLP)

Abstract

Reliability inference in a multicomponent stress-strength (MSS) model is studied when components are exposed to a specific random stress. Stress and strength variables are assumed to follow inverse Weibull distributions with different scale and same shape parameter. A s-out-of-k:G system fails if s or more components simultaneously become inoperative. Different estimates of MSS reliability are obtained from frequentist and Bayesian viewpoint. In particular Bayes estimates are evaluated from Lindley method and Metropolis-Hastings algorithm. Unbiased estimation is also considered when shape parameter is known. We construct asymptotic intervals and obtain corresponding coverage probabilities using observed information matrix. In sequel credible intervals are also obtained. A simulation study is performed to examine the estimated risks of proposed estimation methods and analyze two numerical examples from application viewpoint. Finally, optimal plans are discussed for the multicomponent system.

Suggested Citation

  • Raj Kamal Maurya & Yogesh Mani Tripathi & Tanmay Kayal, 2022. "Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 364-401, May.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00263-0
    DOI: 10.1007/s13571-021-00263-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00263-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00263-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    2. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neama Salah Youssef Temraz, 2023. "Inference on the stress strength reliability with exponentiated generalized Marshall Olkin-G distribution," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-26, August.
    2. Amal S. Hassan & E. A. Elsherpieny & Rokaya E. Mohamed, 2025. "Bayesian Estimation of Stress Strength Modeling Using MCMC Method Based on Outliers," Annals of Data Science, Springer, vol. 12(1), pages 23-62, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    2. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    3. Sanjay Kumar Singh & Umesh Singh & Dinesh Kumar, 2013. "Bayesian estimation of parameters of inverse Weibull distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1597-1607, July.
    4. Devendra Kumar, 2017. "The Singh–Maddala distribution: properties and estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1297-1311, November.
    5. Aisha Fayomi & Ehab M. Almetwally & Maha E. Qura, 2023. "Exploring New Horizons: Advancing Data Analysis in Kidney Patient Infection Rates and UEFA Champions League Scores Using Bivariate Kavya–Manoharan Transformation Family of Distributions," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    6. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    7. A. Asgharzadeh & S. F. Bagheri & N. A. Ibrahim & M. R. Abubakar, 2020. "Optimal confidence regions for the two-parameter exponential distribution based on records," Computational Statistics, Springer, vol. 35(1), pages 309-326, March.
    8. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    9. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    10. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    11. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    12. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    13. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    14. Hassan M. Okasha & Abdulkareem M. Basheer & Yuhlong Lio, 2022. "The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-27, December.
    15. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
    16. Indrajeet Kumar & Shishir Kumar Jha & Kapil Kumar, 2023. "On Some Estimation Methods for the Inverse Pareto Distribution," Annals of Data Science, Springer, vol. 10(4), pages 1035-1068, August.
    17. Hamdy M. Salem, 2019. "The Marshall–Olkin Generalized Inverse Weibull Distribution: Properties and Application," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 1-54, February.
    18. Hanieh Panahi & Abdolreza Sayyareh, 2014. "Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 215-232, January.
    19. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    20. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00263-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.