IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4826-d1007746.html
   My bibliography  Save this article

The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions

Author

Listed:
  • Hassan M. Okasha

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdulkareem M. Basheer

    (Faculty of Administrative Sciences, Albaydha University, Albaydha, Yemen)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

Abstract

Given a sample, E-Bayesian estimates, which are the expected Bayesian estimators over the joint distributions of two hyperparameters in the prior distribution, are developed for the inverse Weibull distribution rate parameter under the scaled squared error and linear exponential error loss functions, respectively. The corresponding expected mean square errors, EMSEs, of E-Bayesian estimators based on the sample are derived. Moreover, the theoretical properties of EMSEs are established. A Monte Carlo simulation study is conducted for the performance comparison. Finally, three data sets are given for illustration.

Suggested Citation

  • Hassan M. Okasha & Abdulkareem M. Basheer & Yuhlong Lio, 2022. "The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4826-:d:1007746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Yousefzadeh, 2017. "E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 1-8, January.
    2. Sanjay Kumar Singh & Umesh Singh & Dinesh Kumar, 2013. "Bayesian estimation of parameters of inverse Weibull distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1597-1607, July.
    3. Steve Bennett, 1983. "Log‐Logistic Regression Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 165-171, June.
    4. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulkareem M. Basheer & H. M. Okasha & A. H. El-Baz & A. M. K. Tarabia, 2023. "E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution," Annals of Data Science, Springer, vol. 10(3), pages 737-759, June.
    2. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    3. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    4. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    5. Ibrahim Elbatal & Francesca Condino & Filippo Domma, 2016. "Reflected Generalized Beta Inverse Weibull Distribution: definition and properties," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 316-340, November.
    6. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    7. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    8. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    9. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    10. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.
    11. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
    12. Singh Housila P. & Mehta Vishal, 2017. "Improved Estimation of the Scale Parameter for Log-Logistic Distribution Using Balanced Ranked Set Sampling," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 53-74, March.
    13. Hamdy M. Salem, 2019. "The Marshall–Olkin Generalized Inverse Weibull Distribution: Properties and Application," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 1-54, February.
    14. Bahoo-Torodi, Aliasghar & Torrisi, Salvatore, 2022. "When do spinouts benefit from market overlap with parent firms?," Journal of Business Venturing, Elsevier, vol. 37(6).
    15. Hanieh Panahi & Abdolreza Sayyareh, 2014. "Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 215-232, January.
    16. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    17. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    18. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    19. Trond Petersen, 1986. "Estimating Fully Parametric Hazard Rate Models with Time-Dependent Covariates," Sociological Methods & Research, , vol. 14(3), pages 219-246, February.
    20. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4826-:d:1007746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.