IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v78y2016i2d10.1007_s13571-015-0113-3.html
   My bibliography  Save this article

Risk Diversifying Treaty Between Two Companies with Only One in Insurance Business

Author

Listed:
  • I. Venkat Appal Raju

    (Indian Institute of Technology Jodhpur)

  • S. Ramasubramanian

    (Indian Statistical Institute)

Abstract

We consider an insurance company (Company 1) and another company (Company 2) operating under a risk diversification treaty; we assume that Company 2 does not have any insurance business of its own. Company 2 takes care of a pre-agreed fraction of any possible deficit that Company 1 may face; in return, Company 2 gets a retainer fee at a constant rate. (The situation can also be looked upon as Company 1 acting as a subsidiary of Company 2.) The joint dynamics is modelled in terms of appropriate Skorokhod problem in the quadrant. Corresponding ruin problem is studied, and advantages of the treaty are pointed out. It is shown that ruin probability decays at a faster rate under the treaty. Some numerical results are also presented to project advantages of our formal model.

Suggested Citation

  • I. Venkat Appal Raju & S. Ramasubramanian, 2016. "Risk Diversifying Treaty Between Two Companies with Only One in Insurance Business," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 183-214, November.
  • Handle: RePEc:spr:sankhb:v:78:y:2016:i:2:d:10.1007_s13571-015-0113-3
    DOI: 10.1007/s13571-015-0113-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-015-0113-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-015-0113-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickson, David C.M. & Waters, Howard R., 2004. "Some Optimal Dividends Problems," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 49-74, May.
    2. Garcia, Jorge M.A., 2005. "Explicit Solutions for Survival Probabilities in the Classical Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 113-130, May.
    3. S. Ramasubramanian, 2000. "A Subsidy-Surplus Model and the Skorokhod Problem in an Orthant," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 509-538, August.
    4. Martin I. Reiman, 1984. "Open Queueing Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 441-458, August.
    5. Andersson, Fredrik & Skogh, Goran, 2003. "Quality, self-regulation, and competition: the case of insurance," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 267-280, April.
    6. Ramasubramanian, S., 2006. "An insurance network: Nash equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 374-390, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Offer Kella & S. Ramasubramanian, 2012. "Asymptotic Irrelevance of Initial Conditions for Skorohod Reflection Mapping on the Nonnegative Orthant," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 301-312, May.
    2. Ramasubramanian, S., 2006. "An insurance network: Nash equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 374-390, April.
    3. Atar, Rami & Shadmi, Yonatan, 2023. "Fluid limits for earliest-deadline-first networks," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 279-307.
    4. Josh Reed & Yair Shaki, 2015. "A Fair Policy for the G / GI / N Queue with Multiple Server Pools," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 558-595, March.
    5. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    6. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    7. Vierkötter, Matthias & Schmidli, Hanspeter, 2017. "On optimal dividends with exponential and linear penalty payments," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 265-270.
    8. Muralidharan, Ajith & Pedarsani, Ramtin & Varaiya, Pravin, 2015. "Analysis of fixed-time control," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 81-90.
    9. Mor Armony & Constantinos Maglaras, 2004. "On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design," Operations Research, INFORMS, vol. 52(2), pages 271-292, April.
    10. Saulius Minkevičius & Edvinas Greičius, 2019. "Heavy Traffic Limits for the Extreme Waiting Time in Multi-phase Queueing Systems," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 109-124, March.
    11. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    12. Biswas, Anup & Budhiraja, Amarjit, 2011. "Exit time and invariant measure asymptotics for small noise constrained diffusions," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 899-924.
    13. Avi Mandelbaum & Kavita Ramanan, 2010. "Directional Derivatives of Oblique Reflection Maps," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 527-558, August.
    14. Eisenberg, Julia & Krühner, Paul, 2018. "The impact of negative interest rates on optimal capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 1-10.
    15. Yamada, Keigo, 1999. "Two limit theorems for queueing systems around the convergence of stochastic integrals with respect to renewal processes," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 103-128, March.
    16. Yuguang Fan & Philip S. Griffin & Ross Maller & Alexander Szimayer & Tiandong Wang, 2017. "The Effects of Largest Claim and Excess of Loss Reinsurance on a Company’s Ruin Time and Valuation," Risks, MDPI, vol. 5(1), pages 1-27, January.
    17. Ward Whitt & Wei You, 2020. "Heavy-traffic limits for stationary network flows," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 53-68, June.
    18. Yongjiang Guo & Yunan Liu & Renhu Pei, 2018. "Functional law of the iterated logarithm for multi-server queues with batch arrivals and customer feedback," Annals of Operations Research, Springer, vol. 264(1), pages 157-191, May.
    19. Dickson, David C.M., 2016. "A note on some joint distribution functions involving the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 120-124.
    20. Ekaterina Bulinskaya & Julia Gusak & Anastasia Muromskaya, 2015. "Discrete-time Insurance Model with Capital Injections and Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 899-914, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:78:y:2016:i:2:d:10.1007_s13571-015-0113-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.