IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v88y2018i1d10.1007_s11134-017-9553-y.html
   My bibliography  Save this article

Stability of linear EDF networks with resource sharing

Author

Listed:
  • Łukasz Kruk

    (Maria Curie-Skłodowska University)

Abstract

We consider a linear real-time, multiresource network with generally distributed stochastic primitives and soft customer deadlines, in which some users require service from several shared resources simultaneously. We show that a strictly subcritical network of this type is stable under the preemptive Earliest Deadline First scheduling strategy. Our argument is direct, without using fluid model analysis as an intermediate step. As an application of our main result, we propose a stable proxy for the preemptive Shortest Remaining Processing Time service protocol for linear, strictly subcritical resource sharing networks.

Suggested Citation

  • Łukasz Kruk, 2018. "Stability of linear EDF networks with resource sharing," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 167-203, February.
  • Handle: RePEc:spr:queues:v:88:y:2018:i:1:d:10.1007_s11134-017-9553-y
    DOI: 10.1007/s11134-017-9553-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9553-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9553-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Łukasz Kruk, 2016. "Minimality of EDF networks with resource sharing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 259-283, October.
    2. Łukasz Kruk, 2011. "An Open Queueing Network with Asymptotically Stable Fluid Model and Unconventional Heavy Traffic Behavior," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 538-551, August.
    3. Rami Atar & Anup Biswas & Haya Kaspi, 2015. "Fluid Limits of G / G /1+ G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 683-702, March.
    4. Itai Gurvich & Jan A. Van Mieghem, 2015. "Collaboration and Multitasking in Networks: Architectures, Bottlenecks, and Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 16-33, February.
    5. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Kruk, 2020. "Continuity and monotonicity of solutions to a greedy maximization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 33-76, August.
    2. Łukasz Kruk & Robert Gieroba, 2022. "Local edge minimality of SRPT networks with shared resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 459-492, December.
    3. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    4. Łukasz Kruk, 2017. "Edge minimality of EDF resource sharing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 331-366, October.
    5. Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
    6. Rami Atar & Anup Biswas & Haya Kaspi, 2015. "Fluid Limits of G / G /1+ G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 683-702, March.
    7. Atar, Rami & Shadmi, Yonatan, 2023. "Fluid limits for earliest-deadline-first networks," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 279-307.
    8. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    9. Atar, Rami & Biswas, Anup & Kaspi, Haya, 2018. "Law of large numbers for the many-server earliest-deadline-first queue," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2270-2296.
    10. Zhichao Feng & Milind Dawande & Ganesh Janakiraman, 2021. "On the Capacity of a Process with Batch Processing and Setup Times," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4273-4287, November.
    11. Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.
    12. Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
    13. Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
    14. Milind Dawande & Zhichao Feng & Ganesh Janakiraman, 2021. "On the Structure of Bottlenecks in Processes," Management Science, INFORMS, vol. 67(6), pages 3853-3870, June.
    15. Castiel, Eyal & Borst, Sem & Miclo, Laurent & Simatos, Florian & Whiting, Phil, 2020. "Induced idleness leads to deterministic heavy traffic limits for queue-based random-access algorithms," TSE Working Papers 20-1129, Toulouse School of Economics (TSE).
    16. Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
    17. Yang Bo & Milind Dawande & Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2019. "Determining Process Capacity: Intractability and Efficient Special Cases," Service Science, INFORMS, vol. 21(1), pages 139-153, January.
    18. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
    19. Łukasz Kruk, 2022. "Heavy traffic analysis for single-server SRPT and LRPT queues via EDF diffusion limits," Annals of Operations Research, Springer, vol. 310(2), pages 411-429, March.
    20. Łukasz Kruk, 2016. "Minimality of EDF networks with resource sharing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 259-283, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:88:y:2018:i:1:d:10.1007_s11134-017-9553-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.