IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v89y2024i1d10.1007_s11336-024-09967-4.html
   My bibliography  Save this article

Reducing Attenuation Bias in Regression Analyses Involving Rating Scale Data via Psychometric Modeling

Author

Listed:
  • Cees A. W. Glas

    (University of Twente)

  • Terrence D. Jorgensen

    (University of Amsterdam)

  • Debby ten Hove

    (Vrije Universiteit Amsterdam)

Abstract

Many studies in fields such as psychology and educational sciences obtain information about attributes of subjects through observational studies, in which raters score subjects using multiple-item rating scales. Error variance due to measurement effects, such as items and raters, attenuate the regression coefficients and lower the power of (hierarchical) linear models. A modeling procedure is discussed to reduce the attenuation. The procedure consists of (1) an item response theory (IRT) model to map the discrete item responses to a continuous latent scale and (2) a generalizability theory (GT) model to separate the variance in the latent measurement into variance components of interest and nuisance variance components. It will be shown how measurements obtained from this mixture of IRT and GT models can be embedded in (hierarchical) linear models, both as predictor or criterion variables, such that error variance due to nuisance effects are partialled out. Using examples from the field of educational measurement, it is shown how general-purpose software can be used to implement the modeling procedure.

Suggested Citation

  • Cees A. W. Glas & Terrence D. Jorgensen & Debby ten Hove, 2024. "Reducing Attenuation Bias in Regression Analyses Involving Rating Scale Data via Psychometric Modeling," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 42-63, March.
  • Handle: RePEc:spr:psycho:v:89:y:2024:i:1:d:10.1007_s11336-024-09967-4
    DOI: 10.1007/s11336-024-09967-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-024-09967-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-024-09967-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    3. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    4. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    5. Jean-Paul Fox & Cees Glas, 2003. "Bayesian modeling of measurement error in predictor variables using item response theory," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 169-191, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai-Fa Hung & Wen-Chung Wang, 2012. "The Generalized Multilevel Facets Model for Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 231-255, April.
    2. Jiwei Zhang & Zhaoyuan Zhang & Jian Tao, 2021. "A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data," Computational Statistics, Springer, vol. 36(4), pages 2643-2669, December.
    3. Gunter Maris & Timo Bechger & Ernesto Martin, 2015. "A Gibbs Sampler for the (Extended) Marginal Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 859-879, December.
    4. Mariagiulia Matteucci & Bernard Veldkamp, 2015. "The approach of power priors for ability estimation in IRT models," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 917-926, May.
    5. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    6. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    7. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    8. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    9. Heleno Bolfarine & Jorge Luis Bazan, 2010. "Bayesian Estimation of the Logistic Positive Exponent IRT Model," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 693-713, December.
    10. Bacci, Silvia & Fabbricatore, Rosa & Iannario, Maria, 2023. "Multilevel IRT models for the analysis of satisfaction for distance learning during the Covid-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    11. Artur Pokropek, 2015. "Phantom Effects in Multilevel Compositional Analysis," Sociological Methods & Research, , vol. 44(4), pages 677-705, November.
    12. Azevedo, Caio L.N. & Andrade, Dalton F. & Fox, Jean-Paul, 2012. "A Bayesian generalized multiple group IRT model with model-fit assessment tools," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4399-4412.
    13. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    14. Jean-Paul Fox & Cees Glas, 2003. "Bayesian modeling of measurement error in predictor variables using item response theory," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 169-191, June.
    15. Chun Wang & Gongjun Xu & Xue Zhang, 2019. "Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 673-700, September.
    16. Steven Andrew Culpepper & Trevor Park, 2017. "Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 591-616, October.
    17. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    18. Hong Jiao, 2011. "J.-P. FOX (2010) Bayesian Item Response Modeling: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 360-362, April.
    19. Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
    20. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:1:d:10.1007_s11336-024-09967-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.