IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v43y2025i3d10.1007_s40273-024-01457-w.html
   My bibliography  Save this article

A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment

Author

Listed:
  • Enoch Yi-Tung Chen

    (Karolinska Institutet)

  • Paul W. Dickman

    (Karolinska Institutet)

  • Mark S. Clements

    (Karolinska Institutet)

Abstract

Background Multistate models have been widely applied in health technology assessment. However, extrapolating survival in a multistate model setting presents challenges in terms of precision and bias. In this article, we develop an individual-level continuous-time multistate model that integrates relative survival extrapolation and mixed time scales. Methods We illustrate our proposed model using an illness–death model. We model the transition rates using flexible parametric models. We update the hesim package and the microsimulation package in R to simulate event times from models with mixed time scales. This feature allows us to incorporate relative survival extrapolation in a multistate setting. We compare several multistate settings with different parametric models (standard vs. flexible parametric models), and survival frameworks (all-cause vs. relative survival framework) using a previous clinical trial as an illustrative example. Results Our proposed approach allows relative survival extrapolation to be carried out in a multistate model. In the example case study, the results agreed better with the observed data than did the commonly applied approach using standard parametric models within an all-cause survival framework. Conclusions We introduce a multistate model that uses flexible parametric models and integrates relative survival extrapolation with mixed time scales. It provides an alternative to combine short-term trial data with long-term external data within a multistate model context in health technology assessment.

Suggested Citation

  • Enoch Yi-Tung Chen & Paul W. Dickman & Mark S. Clements, 2025. "A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment," PharmacoEconomics, Springer, vol. 43(3), pages 297-310, March.
  • Handle: RePEc:spr:pharme:v:43:y:2025:i:3:d:10.1007_s40273-024-01457-w
    DOI: 10.1007/s40273-024-01457-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-024-01457-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-024-01457-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    3. Patrick Royston & Paul C. Lambert, 2011. "Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model," Stata Press books, StataCorp LLC, number fpsaus, December.
    4. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884, Decembrie.
    5. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023, October.
    6. Jing‐Shiang Hwang & Tsuey‐Hwa Hu & Lukas Jyuhn‐Hsiarn Lee & Jung‐Der Wang, 2017. "Estimating lifetime medical costs from censored claims data," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 332-344, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    2. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    3. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Salah Ghabri & Françoise F. Hamers & Jean Michel Josselin, 2016. "Exploring Uncertainty in Economic Evaluations of Drugs and Medical Devices: Lessons from the First Review of Manufacturers’ Submissions to the French National Authority for Health," PharmacoEconomics, Springer, vol. 34(6), pages 617-624, June.
    5. Joke Bilcke & Philippe Beutels & Marc Brisson & Mark Jit, 2011. "Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models," Medical Decision Making, , vol. 31(4), pages 675-692, July.
    6. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    7. Julie A. Campbell & Glen J. Henson & Valery Fuh Ngwa & Hasnat Ahmad & Bruce V. Taylor & Ingrid Mei & Andrew J. Palmer, 2025. "Estimation of Transition Probabilities from a Large Cohort (> 6000) of Australians Living with Multiple Sclerosis (MS) for Changing Disability Severity Classifications, MS Phenotype, and Disease-Modif," PharmacoEconomics, Springer, vol. 43(2), pages 223-239, February.
    8. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    9. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    10. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    11. Sara Kaveh & Nashmil Ghadimi & Amirhossein Zarei Alvar & Kamran Roudini & Rajabali Daroudi, 2024. "Trastuzumab plus chemotherapy versus chemotherapy alone in HER2-positive gastric cancer treatment in Iran: a cost-effectiveness analysis," Health Economics Review, Springer, vol. 14(1), pages 1-14, December.
    12. Matthew Franklin & James Lomas & Gerry Richardson, 2020. "Conducting Value for Money Analyses for Non-randomised Interventional Studies Including Service Evaluations: An Educational Review with Recommendations," PharmacoEconomics, Springer, vol. 38(7), pages 665-681, July.
    13. Joseph Kwon & Ruairidh Milne & Clare Rayner & Román Rocha Lawrence & Jordan Mullard & Ghazala Mir & Brendan Delaney & Manoj Sivan & Stavros Petrou, 2024. "Impact of Long COVID on productivity and informal caregiving," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(7), pages 1095-1115, September.
    14. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    15. Osvaldo Ulises Garay & Marie Libérée Nishimwe & Marwân-al-Qays Bousmah & Asmaa Janah & Pierre-Marie Girard & Geneviève Chêne & Laetitia Moinot & Luis Sagaon-Teyssier & Jean-Luc Meynard & Bruno Spire &, 2019. "Cost-Effectiveness Analysis of Lopinavir/Ritonavir Monotherapy Versus Standard Combination Antiretroviral Therapy in HIV-1 Infected Patients with Viral Suppression in France (ANRS 140 DREAM)," PharmacoEconomics - Open, Springer, vol. 3(4), pages 505-515, December.
    16. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    17. Caroline S. Clarke & Mariya Melnychuk & Angus I. G. Ramsay & Cecilia Vindrola-Padros & Claire Levermore & Ravi Barod & Axel Bex & John Hines & Muntzer M. Mughal & Kathy Pritchard-Jones & Maxine Tran &, 2022. "Cost-Utility Analysis of Major System Change in Specialist Cancer Surgery in London, England, Using Linked Patient-Level Electronic Health Records and Difference-in-Differences Analysis," Applied Health Economics and Health Policy, Springer, vol. 20(6), pages 905-917, November.
    18. Zuzana Špacírová & Stephen Kaptoge & Leticia García-Mochón & Miguel Rodríguez Barranco & María José Sánchez Pérez & Nicola P. Bondonno & Anne Tjønneland & Elisabete Weiderpass & Sara Grioni & Jaime Es, 2023. "The cost-effectiveness of a uniform versus age-based threshold for one-off screening for prevention of cardiovascular disease," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(7), pages 1033-1045, September.
    19. Kasper M. Johannesen & Karl Claxton & Mark J. Sculpher & Allan J. Wailoo, 2018. "How to design the cost‐effectiveness appraisal process of new healthcare technologies to maximise population health: A conceptual framework," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 41-54, February.
    20. Matthew Franklin & James Lomas & Simon Walker & Tracey Young, 2019. "An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 37(5), pages 631-643, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:43:y:2025:i:3:d:10.1007_s40273-024-01457-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.