IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v43y2025i3d10.1007_s40273-024-01457-w.html
   My bibliography  Save this article

A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment

Author

Listed:
  • Enoch Yi-Tung Chen

    (Karolinska Institutet)

  • Paul W. Dickman

    (Karolinska Institutet)

  • Mark S. Clements

    (Karolinska Institutet)

Abstract

Background Multistate models have been widely applied in health technology assessment. However, extrapolating survival in a multistate model setting presents challenges in terms of precision and bias. In this article, we develop an individual-level continuous-time multistate model that integrates relative survival extrapolation and mixed time scales. Methods We illustrate our proposed model using an illness–death model. We model the transition rates using flexible parametric models. We update the hesim package and the microsimulation package in R to simulate event times from models with mixed time scales. This feature allows us to incorporate relative survival extrapolation in a multistate setting. We compare several multistate settings with different parametric models (standard vs. flexible parametric models), and survival frameworks (all-cause vs. relative survival framework) using a previous clinical trial as an illustrative example. Results Our proposed approach allows relative survival extrapolation to be carried out in a multistate model. In the example case study, the results agreed better with the observed data than did the commonly applied approach using standard parametric models within an all-cause survival framework. Conclusions We introduce a multistate model that uses flexible parametric models and integrates relative survival extrapolation with mixed time scales. It provides an alternative to combine short-term trial data with long-term external data within a multistate model context in health technology assessment.

Suggested Citation

  • Enoch Yi-Tung Chen & Paul W. Dickman & Mark S. Clements, 2025. "A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment," PharmacoEconomics, Springer, vol. 43(3), pages 297-310, March.
  • Handle: RePEc:spr:pharme:v:43:y:2025:i:3:d:10.1007_s40273-024-01457-w
    DOI: 10.1007/s40273-024-01457-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-024-01457-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-024-01457-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629, Decembrie.
    3. Patrick Royston & Paul C. Lambert, 2011. "Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model," Stata Press books, StataCorp LLC, number fpsaus, December.
    4. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023, October.
    5. Jing‐Shiang Hwang & Tsuey‐Hwa Hu & Lukas Jyuhn‐Hsiarn Lee & Jung‐Der Wang, 2017. "Estimating lifetime medical costs from censored claims data," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 332-344, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    2. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    3. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Joke Bilcke & Philippe Beutels & Marc Brisson & Mark Jit, 2011. "Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models," Medical Decision Making, , vol. 31(4), pages 675-692, July.
    5. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    6. Salah Ghabri & Françoise F. Hamers & Jean Michel Josselin, 2016. "Exploring Uncertainty in Economic Evaluations of Drugs and Medical Devices: Lessons from the First Review of Manufacturers’ Submissions to the French National Authority for Health," PharmacoEconomics, Springer, vol. 34(6), pages 617-624, June.
    7. Enoch Yi-Tung Chen & Yuliya Leontyeva & Chia-Ni Lin & Jung-Der Wang & Mark S. Clements & Paul W. Dickman, 2024. "Comparing Survival Extrapolation within All-Cause and Relative Survival Frameworks by Standard Parametric Models and Flexible Parametric Spline Models Using the Swedish Cancer Registry," Medical Decision Making, , vol. 44(3), pages 269-282, April.
    8. V. J. Roelofs & M. C. Kennedy, 2011. "Sensitivity Analysis and Estimation of Extreme Tail Behavior in Two‐Dimensional Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1597-1609, October.
    9. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    10. Xudong Du & Mier Li & Ping Zhu & Ju Wang & Lisha Hou & Jijie Li & Hongdao Meng & Muke Zhou & Cairong Zhu, 2018. "Comparison of the flexible parametric survival model and Cox model in estimating Markov transition probabilities using real-world data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
    11. Helen A. Dakin & José Leal & Andrew Briggs & Philip Clarke & Rury R. Holman & Alastair Gray, 2020. "Accurately Reflecting Uncertainty When Using Patient-Level Simulation Models to Extrapolate Clinical Trial Data," Medical Decision Making, , vol. 40(4), pages 460-473, May.
    12. Oluwatomi Adetunji & John Bischoff & Christopher J. Willy, 2018. "Managing system obsolescence via multicriteria decision making," Systems Engineering, John Wiley & Sons, vol. 21(4), pages 307-321, July.
    13. Jonah Popp & John A. Nyman & Xianghua Luo & Jill Bengtson & Katherine Lust & Lawrence An & Jasjit S. Ahluwalia & Janet L. Thomas, 2018. "Cost-effectiveness of enhancing a Quit-and-Win smoking cessation program for college students," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1319-1333, December.
    14. Vakaramoko Diaby & Georges Adunlin & Alberto Montero, 2014. "Survival Modeling for the Estimation of Transition Probabilities in Model-Based Economic Evaluations in the Absence of Individual Patient Data: A Tutorial," PharmacoEconomics, Springer, vol. 32(2), pages 101-108, February.
    15. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    16. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    17. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    18. Julie A. Campbell & Glen J. Henson & Valery Fuh Ngwa & Hasnat Ahmad & Bruce V. Taylor & Ingrid Mei & Andrew J. Palmer, 2025. "Estimation of Transition Probabilities from a Large Cohort (> 6000) of Australians Living with Multiple Sclerosis (MS) for Changing Disability Severity Classifications, MS Phenotype, and Disease-Modif," PharmacoEconomics, Springer, vol. 43(2), pages 223-239, February.
    19. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    20. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:43:y:2025:i:3:d:10.1007_s40273-024-01457-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.