IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v38y2016i1d10.1007_s00291-015-0416-9.html
   My bibliography  Save this article

An improved evolutionary algorithm for the two-stage transportation problem with fixed charge at depots

Author

Listed:
  • Herminia I. Calvete

    (IUMA, Universidad de Zaragoza)

  • Carmen Galé

    (IUMA, Universidad de Zaragoza)

  • José A. Iranzo

    (IUMA, Universidad de Zaragoza)

Abstract

This paper addresses a two-stage transportation problem with a fixed charge at depots. The goal is to determine the best way of delivering a commodity from a set of plants to a set of customers with known demand using a set of potential depots as intermediate transshipment points, while minimizing the overall costs incurred. These costs refer to fixed costs arising from using the depots and to variable shipping costs. To solve the problem, a hybrid evolutionary algorithm is developed which combines the control by the chromosomes of which depots to open with the use of optimization techniques to associate a feasible solution to each chromosome. The computational results show the efficiency of the algorithm in terms of the quality of the solutions yielded and the computing time.

Suggested Citation

  • Herminia I. Calvete & Carmen Galé & José A. Iranzo, 2016. "An improved evolutionary algorithm for the two-stage transportation problem with fixed charge at depots," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 189-206, January.
  • Handle: RePEc:spr:orspec:v:38:y:2016:i:1:d:10.1007_s00291-015-0416-9
    DOI: 10.1007/s00291-015-0416-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-015-0416-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-015-0416-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayaraman, Vaidyanathan & Pirkul, Hasan, 2001. "Planning and coordination of production and distribution facilities for multiple commodities," European Journal of Operational Research, Elsevier, vol. 133(2), pages 394-408, January.
    2. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2014. "Planning of a decentralized distribution network using bilevel optimization," Omega, Elsevier, vol. 49(C), pages 30-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adria Soriano & Margaretha Gansterer & Richard F. Hartl, 2018. "The two-region multi-depot pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1077-1108, October.
    2. Ovidiu Cosma & Petrică C. Pop & Cosmin Sabo, 2020. "An Efficient Hybrid Genetic Approach for Solving the Two-Stage Supply Chain Network Design Problem with Fixed Costs," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    3. Gbeminiyi John Oyewole & Olufemi Adetunji, 2021. "A Hybrid Algorithm To Solve The Fixed Charge Solid Location And Transportation Problem," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 5(1), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2009. "A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study," International Journal of Production Economics, Elsevier, vol. 122(1), pages 351-365, November.
    2. Correia, Isabel & Melo, Teresa & Saldanha-da-Gama, Francisco, 2012. "Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions," Technical Reports on Logistics of the Saarland Business School 1, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    3. Hrabec, Dušan & Hvattum, Lars Magnus & Hoff, Arild, 2022. "The value of integrated planning for production, inventory, and routing decisions: A systematic review and meta-analysis," International Journal of Production Economics, Elsevier, vol. 248(C).
    4. Faranak Emtehani & Nasim Nahavandi & Farimah Mokhatab Rafiei, 2021. "A joint inventory–finance model for coordinating a capital-constrained supply chain with financing limitations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-39, December.
    5. Zhou, Xiaoyang & Luo, Rui & Tu, Yan & Lev, Benjamin & Pedrycz, Witold, 2018. "Data envelopment analysis for bi-level systems with multiple followers," Omega, Elsevier, vol. 77(C), pages 180-188.
    6. Wu, Tao & Xiao, Fan & Zhang, Canrong & Zhang, Defu & Liang, Zhe, 2019. "Regression and extrapolation guided optimization for production–distribution with ship–buy–exchange options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 15-37.
    7. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    8. Abdul Sattar Safaei & Saba Farsad & Mohammad Mahdi Paydar, 2020. "Emergency logistics planning under supply risk and demand uncertainty," Operational Research, Springer, vol. 20(3), pages 1437-1460, September.
    9. Shiva Moslemi & Mohammad Hossein Zavvar Sabegh & Abolfazl Mirzazadeh & Yucel Ozturkoglu & Eric Maass, 2017. "A multi-objective model for multi-production and multi-echelon closed-loop pharmaceutical supply chain considering quality concepts: NSGAII approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1717-1733, November.
    10. Halit Üster & Gopalakrishnan Easwaran & Elif Akçali & Sila Çetinkaya, 2007. "Benders decomposition with alternative multiple cuts for a multi‐product closed‐loop supply chain network design model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 890-907, December.
    11. Pundoor, Guruprasad & Chen, Zhi-Long, 2009. "Joint cyclic production and delivery scheduling in a two-stage supply chain," International Journal of Production Economics, Elsevier, vol. 119(1), pages 55-74, May.
    12. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.
    13. Nishizaki, Ichiro & Hayashida, Tomohiro & Sekizaki, Shinya & Okabe, Junya, 2022. "Data envelopment analysis approaches for two-level production and distribution planning problems," European Journal of Operational Research, Elsevier, vol. 300(1), pages 255-268.
    14. Kostis Taxakis & Chrissoleon Papadopoulos, 2016. "A design model and a production–distribution and inventory planning model in multi-product supply chain networks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6436-6457, November.
    15. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    16. Sajad Karimi & Zaniar Ardalan & Omid Poursabzi & B. Naderi, 2023. "Toward a safe supply chain: Incorporating accident, physical, psychosocial and mental overload risks into supply chain network," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5579-5595, June.
    17. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    18. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    19. Ali Diabat & Jean-Philippe Richard & Craig Codrington, 2013. "A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design," Annals of Operations Research, Springer, vol. 203(1), pages 55-80, March.
    20. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2014. "Planning of a decentralized distribution network using bilevel optimization," Omega, Elsevier, vol. 49(C), pages 30-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:38:y:2016:i:1:d:10.1007_s00291-015-0416-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.