IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i1d10.1007_s12597-023-00698-1.html
   My bibliography  Save this article

On vector variational E-inequalities and differentiable vector optimization problem

Author

Listed:
  • Tadeusz Antczak

    (University of Łódź)

  • Najeeb Abdulaleem

    (University of Łódź
    Hadhramout University
    Mahrah University)

Abstract

In this paper, in order to characterize optimality of a class of nonconvex differentiable multiobjective programming problems, we introduce two new types of vector variational-like inequalities, namely, a weak variational E-inequality and a vector variational E-inequality. Namely, under (strictly) E-convexity, we prove relationships between the aforesaid vector variational-like inequalities and differentiable vector optimization problems. Further, under (strictly) pseudo-E-convexity, we are in position to identify vector critical E-points, weak E-Pareto (E-Pareto) solutions of differentiable vector optimization problems and solutions of these introduced vector variational-like inequalities.

Suggested Citation

  • Tadeusz Antczak & Najeeb Abdulaleem, 2024. "On vector variational E-inequalities and differentiable vector optimization problem," OPSEARCH, Springer;Operational Research Society of India, vol. 61(1), pages 460-482, March.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:1:d:10.1007_s12597-023-00698-1
    DOI: 10.1007/s12597-023-00698-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00698-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00698-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    2. Ruiz-Garzon, G. & Osuna-Gomez, R. & Rufian-Lizana, A., 2004. "Relationships between vector variational-like inequality and optimization problems," European Journal of Operational Research, Elsevier, vol. 157(1), pages 113-119, August.
    3. X. Q. Yang & C. J. Goh, 1997. "On Vector Variational Inequalities: Application to Vector Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 431-443, November.
    4. Syed Shakaib Irfan & Mijanur Rahaman & Iqbal Ahmad & Rais Ahmad & Saddam Husain, 2019. "Generalized Nonsmooth Exponential-Type Vector Variational-Like Inequalities and Nonsmooth Vector Optimization Problems in Asplund Spaces," Mathematics, MDPI, vol. 7(4), pages 1-11, April.
    5. X. Q. Yang, 1997. "Vector Variational Inequality and Vector Pseudolinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 95(3), pages 729-734, December.
    6. K. L. Lin & D. P. Yang & J. C. Yao, 1997. "Generalized Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 117-125, January.
    7. Anurag Jayswal & Shipra Singh & Sarita Choudhury, 2015. "On composite vector variational-like inequalities and vector optimization problems," Computational Management Science, Springer, vol. 12(4), pages 577-594, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Chuan Ceng & Shuechin Huang, 2010. "Existence theorems for generalized vector variational inequalities with a variable ordering relation," Journal of Global Optimization, Springer, vol. 46(4), pages 521-535, April.
    2. Ruiz-Garzon, G. & Osuna-Gomez, R. & Rufian-Lizana, A., 2004. "Relationships between vector variational-like inequality and optimization problems," European Journal of Operational Research, Elsevier, vol. 157(1), pages 113-119, August.
    3. S.J. Li & G.Y. Chen & K.L. Teo, 2002. "On the Stability of Generalized Vector Quasivariational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 283-295, May.
    4. X. M. Yang & X. Q. Yang & K. L. Teo, 2004. "Some Remarks on the Minty Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 193-201, April.
    5. Y. Chiang & J. C. Yao, 2004. "Vector Variational Inequalities and the (S)+ Condition," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 271-290, November.
    6. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    7. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    8. T. Jabarootian & J. Zafarani, 2008. "Generalized Vector Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 15-30, January.
    9. S. K. Mishra & B. B. Upadhyay & Le Thi Hoai An, 2014. "Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 763-777, March.
    10. Araya Kheawborisut & Atid Kangtunyakarn, 2024. "An Approximation Algorithm for the Combination of G -Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 13(1), pages 1-30, December.
    11. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Ren-you Zhong & Zhen Dou & Jiang-hua Fan, 2015. "Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 527-549, November.
    13. Anna Nagurney & Qiang Qiang, 2008. "An efficiency measure for dynamic networks modeled as evolutionary variational inequalities with application to the Internet and vulnerability analysis," Netnomics, Springer, vol. 9(1), pages 1-20, January.
    14. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    15. Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
    16. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    17. Younes Hamdouch & Siriphong Lawphongpanich, 2010. "Congestion Pricing for Schedule-Based Transit Networks," Transportation Science, INFORMS, vol. 44(3), pages 350-366, August.
    18. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    19. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    20. V. Ruggiero & L. Zanni, 2000. "A Modified Projection Algorithm for Large Strictly-Convex Quadratic Programs," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 255-279, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:1:d:10.1007_s12597-023-00698-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.