IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00708-y.html
   My bibliography  Save this article

Probing the Pareto front of a large-scale multiobjective problem with a MIP solver

Author

Listed:
  • I. Kaliszewski

    (Systems Research Institute, Polish Academy of Sciences
    Warsaw School of Information Technology)

  • J. Miroforidis

    (Systems Research Institute, Polish Academy of Sciences)

Abstract

The rapid growth of computing power and the development of highly effective optimization solvers build the appetite for solving increasingly extensive problems. However, despite all these efforts, resource constraints (time, memory) often strike back. The ”curse of dimensionality” haunts primarily combinatorial problems, but not only. The issue is even more acute in multiobjective optimization, where several Pareto optimal solutions have to be derived. In our earlier works, we developed a general methodology for multiobjective optimization that allows representing the outcome of a Pareto optimal solution by a hyperrectangle. The sides of the hyperrectangle are defined by lower and upper bounds on the outcome components, i.e., intervals of possible objective function values. Such a representation makes sense if the Pareto optimal solution cannot be derived with the available computation resources. Beyond the research interest, to be of practical value, methodologies of that kind have to be computationally effective and scalable. In this work, we show that our methodology can be effectively coupled with any MIP optimization solver. With that, as long as an analyst is willing to accept a (sufficiently tight) interval representation of the Pareto optimal solution outcome instead of its exact outcome, our methodology scales multiobjective-based analyses well beyond the reach of the MIP solver itself. We operationalize our methodology in the form of a workflow (we nicknamed it Crescent Workflow). We illustrate the workflow working on several large-scale instances of the multiobjective multidimensional 0–1 knapsack problem with three objectives.

Suggested Citation

  • I. Kaliszewski & J. Miroforidis, 2022. "Probing the Pareto front of a large-scale multiobjective problem with a MIP solver," Operational Research, Springer, vol. 22(5), pages 5617-5673, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00708-y
    DOI: 10.1007/s12351-022-00708-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00708-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00708-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacy Kaliszewski, 2006. "Soft Computing For Complex Multiple Criteria Decision Making," International Series in Operations Research and Management Science, Springer, number 978-0-387-30177-8, January.
    2. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    3. S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
    4. Samanlioglu, Funda, 2013. "A multi-objective mathematical model for the industrial hazardous waste location-routing problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 332-340.
    5. Eiselt, H.A. & Marianov, Vladimir, 2014. "A bi-objective model for the location of landfills for municipal solid waste," European Journal of Operational Research, Elsevier, vol. 235(1), pages 187-194.
    6. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    7. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, April.
    8. I. Kaliszewski & J. Miroforidis, 2018. "On upper approximations of Pareto fronts," Journal of Global Optimization, Springer, vol. 72(3), pages 475-490, November.
    9. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    10. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
    11. Kaliszewski, Ignacy & Miroforidis, Janusz & Podkopaev, Dmitry, 2012. "Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy," European Journal of Operational Research, Elsevier, vol. 216(1), pages 188-199.
    12. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    13. I. Kaliszewski & J. Miroforidis, 2014. "Two-Sided Pareto Front Approximations," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 845-855, September.
    14. Fred Glover, 1965. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem," Operations Research, INFORMS, vol. 13(6), pages 879-919, December.
    15. I. Kaliszewski & J. Miroforidis, 2021. "Cooperative multiobjective optimization with bounds on objective functions," Journal of Global Optimization, Springer, vol. 79(2), pages 369-385, February.
    16. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    17. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    2. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
    3. I. Kaliszewski & J. Miroforidis, 2021. "Cooperative multiobjective optimization with bounds on objective functions," Journal of Global Optimization, Springer, vol. 79(2), pages 369-385, February.
    4. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    5. I. Kaliszewski & J. Miroforidis, 2018. "On upper approximations of Pareto fronts," Journal of Global Optimization, Springer, vol. 72(3), pages 475-490, November.
    6. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    7. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    8. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    9. Barbati, Maria & Corrente, Salvatore & Greco, Salvatore, 2020. "A general space-time model for combinatorial optimization problems (and not only)," Omega, Elsevier, vol. 96(C).
    10. Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
    11. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    12. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    13. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    14. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    15. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    16. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    17. Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
    18. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    19. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    20. Amir Ahmadi-Javid & Nasrin Ramshe, 2019. "Designing flexible loop-based material handling AGV paths with cell-adjacency priorities: an efficient cutting-plane algorithm," 4OR, Springer, vol. 17(4), pages 373-400, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00708-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.